re is a great potential for dendroids and related classes of covalently linked macromolecules, viz., supermolecules.Molten salt reactors (MSRs) have the potential to safely support green energy goals while meeting baseload energy needs with diverse energy portfolios. While reactor designers have made tremendous strides with these systems, licensing and deployment of these reactors will be aided through the development of new technology such as on-line and remote monitoring tools. Of particular interest is quantifying reactor off-gas species, such as iodine, within off-gas streams to support the design and operational control of off-gas treatment systems. Here, the development of advanced Raman spectroscopy systems for the on-line analysis of gas composition is discussed, focusing on the key control species I2(g). Signal response was explored with two Raman instruments, utilizing 532 and 671 nm excitation sources, as a function of I2(g) pressure and temperature. Also explored is the integration of advanced data analysis methods to enable real-time and highly accurate analysis of complex optical data. Specifically, the application of chemometric modeling is discussed. Raman spectroscopy paired with chemometric analysis is demonstrated to provide a powerful route to analyzing I2(g) composition within the gas phase, which lays the foundation for applications within molten salt reactor off-gas analysis and other significant chemical processes producing iodine species.The β-phase, in which the intermonomer torsion angle of a fraction of chain segments approaches ∼180°, is an intriguing conformational microstructure of the widely studied light-emitting polymer poly(9,9-dioctylfluorene) (PFO). Its generation can in turn be used to significantly improve the performance of PFO emission-layer-based light-emitting diodes (LEDs). Here, we report the generation of β-phase chain segments in a copolymer, 90F810BT, containing 90% 9,9-dioctylfluorene (F8) and 10% 2,1,3-benzothiadiazole (BT) units and show that significant improvements in performance also ensue for LEDs with β-phase 90F810BT emission layers, generalizing the earlier PFO results. The β-phase was induced by both solvent vapor annealing and dipping copolymer thin films into a solvent/nonsolvent mixture. Subsequent absorption spectra show the characteristic fluorene β-phase peak at ∼435 nm, but luminescence spectra (∼530 nm peak) and quantum yields barely change, with the emission arising following efficient energy transfer to the lowest-lying excited states localized in the vicinity of the BT units. For ∼5% β-phase chain segment fraction relative to 0% β-phase, the LED luminance at 10 V increased by ∼25% to 5940 cd m-2, the maximum external quantum efficiency by ∼61 to 1.91%, and the operational stability from 64% luminance retention after 20 h of operation to 90%. Detailed studies addressing the underlying device physics identify a reduced hole injection barrier, higher hole mobility, correspondingly more balanced electron and hole charge transport, and decreased carrier trapping as the dominant factors. These results confirm the effectiveness of chain conformation control for fluorene-based homo- and copolymer device optimization.Solar water splitting is one of the most efficient technologies to produce H2, which is a clean and renewable energy carrier. Photoanodes for water oxidation play the determining roles in solar water splitting, while its photoelectrochemical (PEC) performance is severely limited by the hole injection efficiency at the interface of semiconductor/electrolyte. To address this problem, in this research, by employing BiVO4 as the model semiconductor for photoanodes, we develop a novel, facile, and efficient method, which simply applies K cations in the preparation process of BiVO4 photoanodes, to in situ induce a crystalline-amorphous heterophase junction by the formation of an amorphous BiVO4 layer (a-BiVO4) on the surface of the crystalline BiVO4 (c-BiVO4) film for PEC water oxidation. The K cation is the key to stimulate the formation of the heterophase, but not incorporated in the final photoelectrodes. Without sacrificing the light absorption, the in situ formed a-BiVO4 layer accelerates the kinetics of the hole transfer at the photoanode/electrolyte interface, leading to the significantly increased efficiency of the surface hole injection to water molecules. Consequently, the BiVO4 photoanode with the crystalline-amorphous heterophase junction (a-BiVO4/c-BiVO4) exhibits almost twice the photocurrent density at 1.23 V (vs reversible hydrogen electrode) for water oxidation than the bare c-BiVO4 ones. Such advantages from the crystalline-amorphous heterophase junction are still effective even when the a-BiVO4/c-BiVO4 is coated by the cocatalyst of FeOOH, reflecting its broad applications in PEC devices. We believe this study can supply an efficient and simple protocol to enhance the PEC water oxidation performance of photoanodes, and provide a new strategy for the potential large-scale application of the solar energy-conversion related devices.Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention owing to their synergetic effects with other 2D materials, such as graphene and hexagonal boron nitride, in TMD-based heterostructures. https://www.selleckchem.com/products/z-ietd-fmk.html Therefore, it is important to understand the physical properties of TMD-TMD vertical heterostructures for their applications in next-generation electronic devices. However, the conventional synthesis process of TMD-TMD heterostructures has some critical limitations, such as nonreproducibility and low yield. In this paper, we synthesize wafer-scale MoS2-WS2 vertical heterostructures (MWVHs) using plasma-enhanced chemical vapor deposition (PE-CVD) via penetrative single-step sulfurization discovered by time-dependent analysis. This method is available for fabricating uniform large-area vertical heterostructures (4 in.) at a low temperature (300 °C). MWVHs were characterized using various spectroscopic and microscopic techniques, which revealed their uniform nanoscale polycrystallinity and the presence of vertical layers of MoS2 and WS2.