This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. https://www.selleckchem.com/CDK.html The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies. Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.The RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of nucleic acid polymerases. RdRPs are essential in virus life cycle due to their central role in viral genome replication/transcription processes. However, their contribution in host adaption has not been well documented. By solving the RdRP crystal structure of the tick-borne encephalitis virus (TBEV), a tick-borne flavivirus, and comparing the structural and sequence features with mosquito-borne flavivirus RdRPs, we found that a region between RdRP catalytic motifs B and C, namely region B-C, clearly bears host-related diversity. Inter-virus substitutions of region B-C sequence were designed in both TBEV and mosquito-borne Japanese encephalitis virus backbones. While region B-C substitutions only had little or moderate effect on RdRP catalytic activities, virus proliferation was not supported by these substitutions in both virus systems. Importantly, a TBEV replicon-derived viral RNA replication was significantly reduced but not abolished by the substitution, suggesting the involvement of region B-C in viral and/or host processes beyond RdRP catalysis. A systematic structural analysis of region B-C in viral RdRPs further emphasizes its high level of structure and length diversity, providing a basis to further refine its relevance in RNA virus-host interactions in a general context.Methamphetamine is a potent and highly addictive psychostimulant, and one of the most widely used illicit drugs. Over recent years, its global usage and seizure have been on a rapid rise, with growing detrimental effects on mental and physical health, and devastating psychosocial impact pressing for intervention. Among the unwanted effects of methamphetamine, acute and long-term sleep impairments are of major concern, posing a significant therapeutic challenge, and a cause of addiction relapse. Unraveling mechanisms and functional correlates of methamphetamine-related sleep and circadian disruption are, therefore, of key relevance to translational and clinical psychiatry. In this article, we review the mounting evidence for the acute and long-term impairements of sleep-wake behavior and circadian activity caused by single or recurring methamphetamine usage and withdrawal. Factors contributing to the severity of sleep loss and related cognitive deficit, with risks of relapse are discussed. Key molecular players mediating methamphetamine-induced dopamine release and neuromodulation are considered, with wake-promoting effects in mesolimbic circuits. The effects on various sleep phases and related changes in dopamine levels in selected subcortical structures are reviewed and compared to other psychostimulants with similar action mechanisms. A critical appraisal is presented of the therapeutic use of modafinil, countering sleep, and circadian rhythm impairments. Finally, emerging knowledge gaps and methodical limitations are highlighted along with the areas for future research and therapeutic translation.Double-strand breaks and stalled replication forks are a significant threat to genomic stability that can lead to chromosomal rearrangements or cell death. The protein CtIP promotes DNA end resection, an early step in homologous recombination repair, and has been found to protect perturbed forks from excessive nucleolytic degradation. However, it remains unknown how CtIP's function in fork protection is regulated. Here, we show that CtIP recruitment to sites of DNA damage and replication stress is impaired upon global inhibition of SUMOylation. We demonstrate that CtIP is a target for modification by SUMO-2 and that this occurs constitutively during S phase. The modification is dependent on the activities of cyclin-dependent kinases and the PI-3-kinase-related kinase ATR on CtIP's carboxyl-terminal region, an interaction with the replication factor PCNA, and the E3 SUMO ligase PIAS4. We also identify residue K578 as a key residue that contributes to CtIP SUMOylation. Functionally, a CtIP mutant where K578 is substituted with a non-SUMOylatable arginine residue is defective in promoting DNA end resection, homologous recombination, and in protecting stalled replication forks from excessive nucleolytic degradation. Our results shed further light on the tightly coordinated regulation of CtIP by SUMOylation in the maintenance of genome stability.Sensing of environmental cues is crucial for cell survival. To adapt to changes in their surroundings cells need to tightly control the repertoire of genes expressed at any time. Regulation of translation is key, especially in organisms in which transcription is hardly controlled, like Trypanosoma brucei. In this study, we describe the shortening of the bulk of the cellular tRNAs during stress at the expense of the conserved 3' CCA-tail. This tRNA shortening is specific for nutritional stress and renders tRNAs unsuitable substrates for translation. We uncovered the nuclease LCCR4 (Tb927.4.2430), a homologue of the conserved deadenylase Ccr4, as being responsible for tRNA trimming. Once optimal growth conditions are restored tRNAs are rapidly repaired by the trypanosome tRNA nucleotidyltransferase thus rendering the recycled tRNAs amenable for translation. This mechanism represents a fast and efficient way to repress translation during stress, allowing quick reactivation with a low energy input.