https://www.selleckchem.com/products/gsk1070916.html IOP decreased during eyelid closure, which was significantly lower than downgaze at 25° (mean ± SEM -2.1 ± 0.3 mmHg vs. -0.7 ± 0.2 mmHg, P = 0.014). Our data suggest that IOP varies reproducibly with gaze direction, albeit with patient variability. IOP generally increased in upgaze but decreased in inferonasal gaze and on eyelid closure. Future studies should investigate the patient variability and IOP dynamics. Our data suggest that IOP varies reproducibly with gaze direction, albeit with patient variability. IOP generally increased in upgaze but decreased in inferonasal gaze and on eyelid closure. Future studies should investigate the patient variability and IOP dynamics. Glaucoma remains a poorly understood disease, and identifying biomarkers for early diagnosis is critical to reducing the risk of glaucoma-related visual impairment and blindness. The aim of this review is to provide current metabolic profiles for glaucoma through a summary and analysis of reported metabolites associated with glaucoma. We searched PubMed and Web of Science for metabolomics studies of humans on glaucoma published before November 11, 2020. Studies were included if they assessed the biomarkers of any types of glaucoma and performed mass spectrometry-based or nuclear magnetic resonance-based metabolomics approach. Pathway enrichment analysis and topology analysis were performed to generate a global view of metabolic signatures related to glaucoma using the MetaboAnalyst 3.0. In total, 18 articles were included in this review, among which 13 studies were focused on open-angle glaucoma (OAG). Seventeen metabolites related to OAG were repeatedly identified, including seven amino acids (arginineechanism changes in glaucoma. Additional studies are needed to validate existing findings, and future research will need to explore the potential overlap between different biological fluids.Immune synapses are formed between immune cells to facil