https://www.selleckchem.com/products/Mizoribine.html Correction for 'Diastereoselective synthesis of chiral 3-substituted isoindolinones via rhodium(iii)-catalyzed oxidative C-H olefination/annulation' by Xue-Hong Li et al., Org. Biomol. Chem., 2021, DOI 10.1039/d1ob00656h.We investigate the rate-dependent fracture of vitrimers by conducting a tear test. Based on the relationship between the fracture energy and the thickness of vitrimer films, we, for the first time, obtain the intrinsic fracture energy and bulk dissipation of vitrimers during crack extension. The intrinsic fracture energy strongly depends on tear speed, and such dependence can be well explained by Eyring theory. In contrast, the bulk dissipation only weakly depends on tear speed, which is drastically different from observations on traditional viscoelastic polymers. We ascribe such a weak rate-dependence to the strong force-sensitivity of the exchange reaction of the dynamic covalent bond in the vitrimer.By using a charcoal supported nano Cu0 catalyst (Cu/C), a highly efficient oxidation of α-diazo esters to α-ketoesters with molecular oxygen as the sole oxidant has been developed. In the presence of the Cu/C catalyst, 2-aryl-α-diazo esters with both electron-donating and electron-withdrawing groups can be oxidized to the corresponding α-ketoesters efficiently. Furthermore, this Cu/C catalyst can catalyse the reaction of aryl α-diazo ester with water to form aryl ketoester, 2-aryl-2-hydroxyl acetate ester and 2-aryl acetate ester. In this case, water is split by α-diazo ester, and the diazo group is displaced by the oxygen or hydrogen atom in water. Mechanistic investigation showed that the reaction of α-diazo ester with oxygen proceeds through a radical pathway. In the presence of 2,2,6,6-tetramethyl piperidine nitrogen oxide, the reaction of α-diazo ester with oxygen is dramatically inhibited. Furthermore, the reaction of α-diazo ester with water is investigated by an isotopic tracer method, and G