https://www.selleckchem.com/products/2-bromohexadecanoic-acid.html More and more people pay attention to the printing speed and quality of 3D printing tools. In order to understand whether the 3D printing rehabilitation brace can play a role in the treatment and repair of joint trauma, we used 3D printing technology to print the rehabilitation brace and compared with the traditional rehabilitation brace. The printed parts were analyzed in detail. The experimental results prove that the rehabilitation braces made by the two methods can play a role in the repair of joint trauma. However, 3D printed rehabilitation braces can better meet the needs of patients with detailed patient data in application. The braces are more suitable, and their production speed is about 35% faster than traditional methods. Through the survey of patients and doctors, it is found that the satisfaction of patients and doctors with printed braces is above 89%, while the satisfaction with traditionally made braces is only about 60%. This shows that the rehabilitation brace based on the Internet of Things 3D printing technology has a more significant role in the treatment and repair of joint trauma, and the effect is better. Quantitative assessment of motor function is extremely important for poststroke patients as it can be used to develop personalized treatment strategies. This study aimed to propose an evaluation method for upper limb motor function in stroke patients. Thirty-four stroke survivors and twenty-five age-matched healthy volunteers as the control group were recruited for this study. Inertial sensor data and surface electromyography (sEMG) signals were collected from the upper limb during voluntary upward reaching. Five features included max shoulder joint angle, peak and average speeds, torso balance calculated from inertial sensor data, and muscle synergy similarity extracted from sEMG data by the nonnegative matrix factorization algorithm. Meanwhile, the Fugl-Meyer score of each