728 (0.645-0.802) and 0.732 (0.681-0.784) for the prediction of 1- and 3-year mortality, respectively. Etiology of heart failure, NYHA class, left ventricular ejection fraction, and QRS morphology had higher predictive power, whereas hemoglobin was less important in females compared to males. The importance of atrial fibrillation and age increased, while the importance of serum creatinine decreased from 1- to 3-year follow-up in both sexes. Conclusions Using ML techniques in combination with easily obtainable clinical features, our models effectively predicted 1- and 3-year all-cause mortality in CRT patients. Sex-specific patterns of predictors were identified, showing a dynamic variation over time.Background Transcatheter closure of paravalvular leak (PVL) has evolved into an alternative to surgery in high-risk patients. In this study, we introduce a new access for transcatheter closure of PVL and seek to evaluate the feasibility and safety of this access. Methods We retrospectively analyzed patients undergoing transbrachial access for transcatheter mitral or aortic PVL closure (August 2017-November 2019) at our hospital. All patients underwent puncture of the brachial artery under local anesthesia. Results The study population included 11 patients, with an average age of 55.91 ± 14.82 years. Ten out of 11 patients were successfully implanted with devices via the brachial artery approach, and one patient was converted to the transseptal approach. The technical success rate of transbrachial access was 90.9%. Mean NYHA functional class improved from 3.1 ± 0.5 before the procedure to 1.9 ± 0.5 after PVL closure. Severe paravalvular regurgitation (PVR) in five patients and moderate PVR in six patients prior to the procedure were significantly reduced to mild in four patients and none in seven patients after the procedure. Complications included one case of pseudoaneurysm and one case of moderate hemolysis aggravation after closure. One patient had an unknown cause of sudden death within 24 h after the procedure. The half-year mortality rate during follow-up was 9.1% (1/11). Conclusions Transbrachial access for transcatheter closure of PVL may be a feasible and safe treatment and should include well-selected patients. It has several potential advantages of simplifying the procedure process and reducing postprocedural bed rest time.Sensory feedback is essential for the control of soft robotic systems and to enable deployment in a variety of different tasks. Proprioception refers to sensing the robot's own state and is of crucial importance in order to deploy soft robotic systems outside of laboratory environments, i.e. where no external sensing, such as motion capture systems, is available. A vision-based sensing approach for a soft robotic arm made from fabric is presented, leveraging the high-resolution sensory feedback provided by cameras. https://www.selleckchem.com/products/sumatriptan.html No mechanical interaction between the sensor and the soft structure is required and consequently the compliance of the soft system is preserved. The integration of a camera into an inflatable, fabric-based bellow actuator is discussed. Three actuators, each featuring an integrated camera, are used to control the spherical robotic arm and simultaneously provide sensory feedback of the two rotational degrees of freedom. A convolutional neural network architecture predicts the two angles describing the robot's orientation from the camera images. Ground truth data is provided by a motion capture system during the training phase of the supervised learning approach and its evaluation thereafter. The camera-based sensing approach is able to provide estimates of the orientation in real-time with an accuracy of about one degree. The reliability of the sensing approach is demonstrated by using the sensory feedback to control the orientation of the robotic arm in closed-loop.The human ability of keeping balance during various locomotion tasks is attributed to our capability of withstanding complex interactions with the environment and coordinating whole-body movements. Despite this, several stability analysis methods are limited by the use of overly simplified biped and foot structures and corresponding contact models. As a result, existing stability criteria tend to be overly restrictive and do not represent the full balance capabilities of complex biped systems. The proposed methodology allows for the characterization of the balance capabilities of general biped models (ranging from reduced-order to whole-body) with segmented feet. Limits of dynamic balance are evaluated by the Boundary of Balance (BoB) and the associated novel balance indicators, both formulated in the Center of Mass (COM) state space. Intermittent heel, flat, and toe contacts are enabled by a contact model that maps discrete contact modes into corresponding center of pressure constraints. For demonstration puation of balance capabilities provides an important benchmarking framework for the stability of general biped/foot systems.Flexible endoscopy involves the insertion of a long narrow flexible tube into the body for diagnostic and therapeutic procedures. In the gastrointestinal (GI) tract, flexible endoscopy plays a major role in cancer screening, surveillance, and treatment programs. As a result of gas insufflation during the procedure, both upper and lower GI endoscopy procedures have been classified as aerosol generating by the guidelines issued by the respective societies during the COVID-19 pandemic-although no quantifiable data on aerosol generation currently exists. Due to the risk of COVID-19 transmission to healthcare workers, most societies halted non-emergency and diagnostic procedures during the lockdown. The long-term implications of stoppage in cancer diagnoses and treatment is predicted to lead to a large increase in preventable deaths. Robotics may play a major role in this field by allowing healthcare operators to control the flexible endoscope from a safe distance and pave a path for protecting healthcare workers through minimizing the risk of virus transmission without reducing diagnostic and therapeutic capacities. This review focuses on the needs and challenges associated with the design of robotic flexible endoscopes for use during a pandemic. The authors propose that a few minor changes to existing platforms or considerations for platforms in development could lead to significant benefits for use during infection control scenarios.