https://www.selleckchem.com/products/ml364.html It was also demonstrated that the doped halloysites weakened hyphal growth-driven gelation, thus maintaining sphere-like pellet structures. The water treatment potential of the hybrid fungal mycelia was assessed through both cationic toxic organic/inorganic-contaminated water and real dye industry wastewater clean-ups. Aided by the mesoporous halloysite sites on their surface, the removal abilities of the hybrid structures were significantly enhanced. Moreover, inherent low sorption ability of HNT for heavy metals was found to be overcome by the aid of fungal mycelia. Finally, universal feature of the dipping-based doping way was confirmed by using different filamentous fungi. Given that traditional approaches to effectively implement fungus-based water treatment are based mostly on polymer-based immobilization techniques, our proposed approach provides a novel and effective alternative via simple doping of living fungi with environmentally-benign clays such as halloysite nanotubes.The purpose of this study was to assess employees' exposure to lead and noise, and to recommend control strategies for reducing these exposures at eight registered electronics recycling facilities in Eastern China. Jiangsu Provincial Center for Disease Control and Prevention (JSCDC) performed a walkthrough and review of health and safety programs during a first visit and conducted full-shift personal and area air monitoring for lead, as well as personal noise exposure measurements on a second visit. Monitoring was performed over two work shifts for a total of 168 employees. Results indicated that employees working at glass breaking and cathode ray tubes dismantling were overexposed both to noise and lead. Airborne lead concentration ranged from 0.1 to 148 μg/m3; and 4 of the 101 samples were above the Chinese permissible exposure limit of 50 μg/m3. Overexposures to lead involved cathode ray tubes dismantling and glass breaking. Employees wor