https://www.selleckchem.com/CDK.html Energetic N-amino-C-nitro compounds 1-amino-4-nitro-1,2,3-triazole and 2-amino-4-nitro-1,2,3-triazole are characterized for the first time as energetic materials. These compounds were characterized chemically by nuclear magnetic resonance (NMR), Infrared spectroscopy and X-ray crystallography. Compounds were also characterized energetically by differential scanning calorimetry (DSC), impact, and friction and found to possess sensitivities and performances classifying them as primary explosives with PETN-like performance.The treatment of cancer patients with α-particle-emitting therapeutics continues to gain in importance and relevance. The range of radiopharmaceutically relevant α-emitters is limited to a few radionuclides, as stable chelators or carrier systems for safe transport of the radioactive cargo are often lacking. Encapsulation of α-emitters into solid inorganic systems can help to diversify the portfolio of candidate radionuclides, provided, that these nanomaterials effectively retain both the parent and the recoil daughters. We therefore focus on designing stable and defined nanocarrier-based systems for various clinically relevant radionuclides, including the promising α-emitting radionuclide 224Ra. Hence, sub-10 nm barium sulfate nanocontainers were prepared and different radiometals like 89Zr, 111In, 131Ba, 177Lu or 224Ra were incorporated. Our system shows stabilities of >90 % regarding the radiometal release from the BaSO4 matrix. Furthermore, we confirm the presence of surface-exposed amine functionalities as well as the formation of a biomolecular corona.Invited for this month's cover is the group of Kristof Zarschler at the University of Dresden, Germany. Read the full text of their Full Paper at 10.1002/open.202000126.Cyclic nigerosylnigerose (CNN) is a cyclic oligosaccharide. Oral administration of CNN promotes immunoglobulin A (IgA) secretion in the gut. IgA is a major antibody secreted into the gut and pla