RESULTS The translated scale demonstrated good internal consistency and test-retest reliability, excellent content validity, and appropriate convergent and discriminant validity. The results of the confirmatory factor analysis supported the two-factor structure of the traditional Chinese version of the Resilience Scale-14. CONCLUSIONS Results suggest that the translated scale is a reliable and valid tool to assess the resilience of young Hong Kong Chinese adolescents. Healthcare professionals could use the newly translated scale to assess resilience levels among Hong Kong adolescents and develop interventions that can help them combat mental health problems and lead healthier lives. TRIAL REGISTRATION Clinicaltrials.gov ID NCT03538145 (retrospectively registered on May 15, 2018).BACKGROUND Little is known about whether mitochondria 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of mitochondrial DNA (mtDNA) oxidative damage, contributes to the development of coronary artery disease (CAD) in diabetic patients. Here, we explored the associations of mtDNA 8-OHdG in leukocytes with obstructive CAD, coronary stenosis severity, cardiovascular biomarkers, and 1-year adverse outcomes after coronary revascularization in patients with type 2 diabetes mellitus (T2DM). METHODS In a total of 1920 consecutive patients with T2DM who underwent coronary angiography due to symptoms of angina or angina equivalents, the presence of obstructive CAD, the number of diseased vessels with ≥ 50% stenosis, and modified Gensini score were cross-sectionally evaluated; the level of mtDNA 8-OHdG was quantified by quantitative PCR. Then, 701 of 1920 diabetic patients who further received coronary revascularization completed 1-year prospective follow-up to document major adverse cardiovascular and cerebral events inducer for mtDNA oxidative damage, led to adverse alterations in markers of mitochondrial and endothelia function. CONCLUSION Greater mtDNA 8-OHdG in leukocytes may serve as an independent risk factor for CAD in patients with T2DM.BACKGROUND Ginsenoside compound K (CK), one of the primary active metabolites of protopanaxadiol-type ginsenosides, is produced by the intestinal flora that degrade ginseng saponins and exhibits diverse biological properties such as anticancer, anti-inflammatory, and anti-allergic properties. However, it is less abundant in plants. Therefore, enabling its commercialization by construction of a Saccharomyces cerevisiae cell factory is of considerable significance. RESULTS We induced overexpression of PGM2, UGP1, and UGT1 genes in WLT-MVA5, and obtained a strain that produces ginsenoside CK. The production of CK at 96 h was 263.94 ± 2.36 mg/L, and the conversion rate from protopanaxadiol (PPD) to ginsenoside CK was 64.23 ± 0.41%. Additionally, it was observed that the addition of glycerol was beneficial to the synthesis of CK. When 20% glucose (C mol) in the YPD medium was replaced by the same C mol glycerol, CK production increased to 384.52 ± 15.23 mg/L, which was 45.68% higher than that in YPD medium, and the PPD conversion rate increased to 77.37 ± 3.37% as well. As we previously observed that ethanol is beneficial to the production of PPD, ethanol and glycerol were fed simultaneously in the 5-L bioreactor fed fermentation, and the CK levels reached 1.70 ± 0.16 g/L. CONCLUSIONS In this study, we constructed an S. cerevisiae cell factory that efficiently produced ginsenoside CK. Glycerol effectively increased the glycosylation efficiency of PPD to ginsenoside CK, guiding higher carbon flow to the synthesis of ginsenosides and effectively improving CK production. CK production attained in a 5-L bioreactor was 1.7 g/L after simultaneous feeding of glycerol and ethanol.BACKGROUND China has more than 18% of the global population and over 770 million workers. However, the burden of disease attributable to occupational risks is unavailable in China. We aimed to estimate the burden of disease attributable to occupational exposures at provincial levels from 1990 to 2017. METHODS We estimated the summary exposure values (SEVs), deaths and disability-adjusted life years (DALYs) attributable to occupational risk factors in China from 1990 to 2017, based on Global Burden of Disease Study (GBD) 2017. There were 18 occupational risks, 22 related causes, and 35 risk-outcome pairs included in this study. Meanwhile, we compared age-standardized death rates attributable to occupational risk factors in provinces of China by socio-demographic index (SDI). RESULTS The SEVs of most occupational risks increased from 1990 to 2017. https://www.selleckchem.com/products/ly333531.html There were 323,833 (95% UI 283,780 - 369,061) deaths and 14,060,210 (12,022,974 - 16,125,763) DALYs attributable to total occupational risks in China, which were 27.9 and 22.1% of corresponding global levels, respectively. For attributable deaths, major risks came from occupational particulate matter, gases, and fumes (PGFs), and for the attributable DALYs, from occupational injuries. The attributable burden was higher in males than in females. Compared with high SDI provinces, low SDI provinces, especially Western China, had higher death rates attributable to total occupational risks, occupational PGFs, and occupational injuries. CONCLUSION Occupational risks contribute to a huge disease burden in China. The attributable burden is higher in males, and in less developed provinces of Western China, reflecting differences in risk exposure, socioeconomic conditions, and type of jobs. Our study highlights the need for further research and focused policy interventions on the health of workers especially for less developed provinces in China to reduce occupational health losses effectively.BACKGROUND Gain-of-function mutations in KIT are driver events of oncogenesis in mast cell tumours (MCTs) affecting companion animals. Somatic mutations of KIT determine the constitutive activation of the tyrosine kinase receptor leading to a worse prognosis and a shorter survival time than MCTs harbouring wild-type KIT. However, canine MCTs carrying KIT somatic mutations generally respond well to tyrosine kinase inhibitors; hence their presence represents a predictor of treatment effectiveness, and its detection allows implementing a stratified medical approach. Despite this, veterinary oncologists experience treatment failures, even with targeted therapies whose cause cannot be elucidated. The first case of an MCT-affected dog caused by a secondary mutation in the tyrosine kinase domain responsible for resistance has recently been reported. The knowledge of this and all the other mutations responsible for resistance would allow the effective bedside implementation of a deeply stratified and more effective medical approach.