e onset of the phase separation, indicating a line tension mechanism. It is proposed that the three components of log-normal decomposition approaching Laurdan emission spectra provide a useful improvement for characterizing Lo-Ld phase-separation phenomena.Single-molecule studies can reveal the distribution of states and interactions between ligand-enzyme complexes not accessible for most studies that measure a large ensemble average response of many molecules. Furthermore, in some biological applications, the information regarding the outliers, not the average of measured properties, can be more important. The high spatial and force resolution provided by atomic force microscopy (AFM) under physiological conditions has been utilized in this study to quantify the force-distance relations of enzyme-drug interactions. Different immobilization techniques of the protein to a surface and the drug to AFM tip were quantitatively compared to improve the accuracy and precision of the measurement. Protein that is directly bound to the surface, forming a monolayer, was compared to enzyme molecules bound to the surface with rigid double-stranded (ds) DNA spacers. These surfaces immobilization techniques were studied with the drug bound directly to the AFM tip and drug bound via flexible poly(ethylene glycol) and rigid dsDNA linkers. The activity of the enzyme was found to be not significantly altered by immobilization methods relative to its activity in solution. The findings indicate that the approach for studying drug-enzyme interaction based on rigid dsDNA linker on the surface and either flexible or rigid linker on the tip affords straightforward, highly specific, reproducible, and accurate force measurements with a potential for single-molecule level studies. The method could facilitate in-depth examination of a broad spectrum of biological targets and potential drugs.The molecular mechanism of platinum-based drugs in concomitant chemoradiation therapy relies on enhancement of DNA damage in cancer cells, particularly that of detrimental clustered lesions and cross-links induced by the abundant low-energy electrons (LEEs) generated by ionizing radiation. We provide the complete 1-20 eV electron-energy dependence of the yields of all conformational LEE-induced lesions to biological DNA, when it binds to five molecules of the chemotherapeutic drug cisplatin. Recording at 1 eV intervals clearly show that the enhancement of all lesions is particularly intense at the energies of core-excited transient molecular anions (i.e., TMAs at 5, 6, and 10 eV). New TMAs are observed at 14 and 18 eV, only in yield functions of cisplatin-DNA complexes. Enhancements of all lesions by cisplatin are quantified over the 1-20 eV range, where maxima appear at 14 and 18 eV. The most detrimental lesions to cell survival exhibit the highest enhancements by factors of 2-3. Whereas no cluster lesions are induced by electrons of energy less then 5 eV in DNA, LEEs of any energy cause clustered damages in the complex. These results confirm the current notion that LEEs and TMAs play a dominant role in the molecular mechanism of platinum-drug chemoradiation therapy.The emerging, multidrug-resistant yeast pathogen Candida auris is responsible for healthcare-associated outbreaks across the globe with high mortality. The rapid spread of C. auris is linked to its successful colonization of human skin, followed by bloodstream infections. We compared glycomics and proteomics of C. auris to closely and distantly related human pathogenic yeasts, C. haemulonii and C. albicans, with the aim to understand the role of cell surface molecules in skin colonization and immune system interactions. Candida auris mannan is distinct from other pathogenic Candida species, as it is highly enriched in β-1,2-linkages. The experimental data showed that C. auris surface mannan β-1,2-linkages were important for the interactions with the immune protein IgG, found in blood and in sweat glands, and with the mannose binding lectin, found in the blood. Candida auris mannan binding to IgG was from 12- to 20-fold stronger than mannan from the more common pathogen C. albicans. The findings suggest unique C. auris mannan could be crucial for the biology and pathogenesis of this emerging pathogen.EP67 is a second-generation, human C5a-derived decapeptide agonist of C5a receptor 1 (C5aR1/CD88) that selectively activates mononuclear phagocytes over neutrophils to potentiate protective innate and adaptive immune responses while potentially minimizing neutrophil-mediated toxicity. Pro7 and N-methyl-Leu8 (Me-Leu8) amino acid residues within EP67 likely induce backbone structural changes that increase potency and selective activation of mononuclear phagocytes over neutrophils versus first-generation EP54. The low coupling efficiency between Pro7 and Me-Leu8 and challenging purification by HPLC, however, greatly increase scale-up costs of EP67 for clinical use. Thus, the goal of this study was to determine whether replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes (cyclohexylalanine7 and/or leucine8) sufficiently preserves EP67 activity in primary human mononuclear phagocytes and neutrophils. We found that EP67 analogues had similar potency, efficacy, and selective activation of mononuclear phagocytes over neutrophils. Thus, replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes is a suitable strategy to overcome scale-up challenges with EP67.Rational control of the self-organization of β-peptides sequences to adopt regular secondary structures is an important challenge in peptidomimetic foldamer science. https://www.selleckchem.com/products/caspofungin-acetate.html By replacing the N- and C-terminal residues of homooligomers of trans-2-aminocyclobutanecarboxylic acid (tACBC)n with N-aminoazetidine-2-carboxylic acid, an 8-helical topology is shown to dominate for sequences up to n = 7. This constitutes an atomic-level tool to override locally the preferred global 12-helix secondary structure of the corresponding tACBC homooligomers of the same length.