https://www.selleckchem.com/products/gpr84-antagonist-8.html Besides, PE elevated ROS activity, NO and MDA contents, and reduced SOD, CAT levels and cell viability. These effects were hindered by G6PD overexpression. MiR-24 was found to directly bind to G6PD at the motif of CUGAGCC and regulated its expression, furtherly, influenced the G6PD-mediated mitochondrial dysfunction and oxidative stress of CH cells. Generally, our study demonstrated that miR-24/G6PD regulates mitochondrial dysfunction and oxidative stress in CH cells, representing a new sight for CH therapy. Generally, our study demonstrated that miR-24/G6PD regulates mitochondrial dysfunction and oxidative stress in CH cells, representing a new sight for CH therapy. The aim of this study was to investigate the mechanism of pro-inflammatory phenotype transformation of microglia induced by oxygen-glucose deprivation (OGD), and how salvianolate regulates the polarization of microglia to exert neuroprotective effects. The immunofluorescence and western blot experiments were used to verify the injury effect on neuronal cells after inflammatory polarization of microglia. Secondly, immunofluorescence staining and western blot were analyzed inflammatory phenotype of microglia and TLR4 signaling pathway after salvianolate treatment. RT-qPCR and ELISA assays were showed the levels of RNA and proteins of inflammatory factors in microglia. Finally, flow cytometry and western blot assay proved that salvianolate had a certain protective effect on neuronal injury after inhibiting the phenotype of microglia. The OGD condition could promote inflammation and activate of TLR4 signal pathway in microglia, and the polarization of microglia triggered caspase-3 signal pathway of neuronal cell. The optimal concentrations of salvianolate were incubated with microglia under OGD condition, which could reduce the reactive oxygen species (ROS) expression (P=0.002) and also regulate the activity of SOD, CAT and GSH-px enzymes (P<0.05)