https://www.selleckchem.com/products/stat-in-1.html Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference pathway (RNAi) and innate pattern-triggered immune responses (PTI). While details of the former process have been well established in recent years, the latter ones are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross-talk between the different antiviral mechanisms. Here, we demonstrate that double-stranded RNA binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX) elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RDR6-dependent dsRNAs play an important role in the triggering of PVX inducors, but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection. Copyright © 2020 American Society for Microbiology.Enteroviruses are common agents of infectious disease that are spread by the fecal-oral route. They are readily inactivated by mild heat, which causes the viral capsid to disintegrate or undergo conformational change. While beneficial for the thermal treatment of food or water, this heat sensitivity poses challenges for the stability of enterovirus vaccines. The thermostability of an enterovirus can be modulated by the composition of the suspending matrix, though the effects of the matrix on virus stability are not understood. Here we determined the thermostability of four enterovirus strains in solutions with varying concentrations of NaCl, and pH. The experimental findings were combined with molecular