The 14-3-3/c-Abl protein-protein interaction (PPI) is related to carcinogenesis and in particular to pathogenesis of chronic myeloid leukemia (CML). Previous studies have demonstrated that molecules able to disrupt this interaction improve the nuclear translocation of c-Abl, inducing apoptosis in leukemia cells. Through an X-ray crystallography screening program, we have identified two phosphate-containing compounds, inosine monophosphate (IMP) and pyridoxal phosphate (PLP), as binders of human 14-3-3σ, by targeting the protein amphipathic groove. Interestingly, they also act as weak inhibitors of the 14-3-3/c-Abl PPI, demonstrated by NMR, SPR, and FP data. A 37-compound library of PLP and IMP analogues was investigated using a FP assay, leading to the identification of three further molecules acting as weak inhibitors of the 14-3-3/c-Abl complex formation. The antiproliferative activity of IMP, PLP, and the three derivatives was tested against K-562 cells, showing that the parent compounds had the most pronounced effect on tumor cells. PLP and IMP were also effective in promoting the c-Abl nuclear translocation in c-Abl overexpressing cells. Further, these compounds demonstrated low cytotoxicity on human Hs27 fibroblasts. In conclusion, our data suggest that 14-3-3σ targeting compounds represent promising hits for further development of drugs against c-Abl-dependent cancers.In this study, the thermoelectric properties of group IIIA element (Al, Ga, In) doped PbS are systematically investigated. Al shows a low solubility limit ( less then 1 mol %) in PbS, whereas Ga and In are soluble up to 2 mol %. Both experimental results and theoretical calculations suggest that Ga or In doping introduces strong gap states in PbS, which are the physical origins of enhanced effective mass and Seebeck coefficients. Meanwhile, a subtle simulation of carrier-concentration-dependent mobilities under single Kane band model clearly reveals that Ga doping significantly lowers the deformation potential of n-type PbS, whereas In does not. This lower deformation potential yields higher electrical conductivities at the same doping levels. https://www.selleckchem.com/products/monastrol.html The weakened electron phonon coupling phenomenon by Ga doping in PbS is further verified by our first-principles calculations. The rare combination of large effective mass and low deformation potential in Ga-doped PbS contributes to a high ZT value of ∼0.9 at 723 K, ∼50% higher than that of Cl-doped PbS control sample.The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10-50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate length scale, involving fibrillation along interfaces between fibril bundles of a few 100s of nanometers in width. Interaction mechanisms at this length scale have not yet been studied, due in part to a lack of established experimental techniques. Here, a new focused ion beam-based sample preparation proterformance.Anti-polyethylene glycol (PEG) antibodies are present in many healthy individuals as well as in patients receiving polyethylene glycol-functionalized drugs. Antibodies against PEG-coated nanocarriers can accelerate their clearance, but their impact on nanodrug properties including nanocarrier integrity is unclear. Here, we show that anti-PEG IgG and IgM antibodies bind to PEG molecules on the surface of PEG-coated liposomal doxorubicin (Doxil, Doxisome, LC-101, and Lipo-Dox), resulting in complement activation, formation of the membrane attack complex (C5b-9) in the liposomal membrane, and rapid release of encapsulated doxorubicin from the liposomes. Drug release depended on both classical and alternative pathways of complement activation. Doxorubicin release of up to 40% was also observed in rats treated with anti-PEG IgG and PEG-coated liposomal doxorubicin. Our results demonstrate that anti-PEG antibodies can disrupt the membrane integrity of PEG-coated liposomal doxorubicin through activation of complement, which may alter therapeutic efficacy and safety in patients with high levels of pre-existing antibodies against PEG.Powder-form piezocatalysts suffer from poor recyclability and pose a potential threat of creating serious secondary pollution, which restrict their practical applications. Thin-film piezocatalysts, which not only exhibit good recyclability but also fully contact with solution, are believed to be one of the solutions to address these problems. In this work, the nanostructured BaTiO3 (BTO) thin films were fabricated by a facile hydrothermal method for their potential applications in piezocatalysis. The vertically standing BTO nanosheets grown on the top of TiO2 nanorod arrays exhibited superior piezocatalytic performance as well as piezo-electrochemical property. Given the different strain states between thin-film piezocatalyst and powder-form piezocatalyst, both the impact force of water and isostatic pressure are taken into consideration in finite element method (FEM) simulation. The FEM simulation shows that a stronger piezoelectric filed can be built in BTO nanosheets because of their easier deformation, and thus can lead to a higher piezocatalytic degradation efficiency. Our work presented here is expected to provide a potential route for the nanoengineering of thin-film piezocatalysts and clarify the catalytic mechanism for substrate-fixed piezocatalysts.We report the construction of blood cell membrane cloaked mesoporous silica nanoparticles for delivery of nanoparticles [fullerenols (Fols)] with fibrinolysis activity which endows the active Fol with successful thrombolysis effect in vivo. In vitro, Fols present excellent fibrinolysis activity, and the Fol with the best fibrinolysis activity is screened based on the correlation between Fols' structure and their fibrinolysis activity. However, the thrombolytic effect in vivo is not satisfactory. To rectify the unsatisfactory situation and avoid the exogenous stimuli, a natural blood cell membrane cloaking strategy with loading the active Fol is chosen to explore as a novel thrombolysis drug. After cloaking, the therapeutic platform prolongs blood circulation time and enhances the targeting effect. Interestingly, compared with platelet membrane cloaking, red blood cell (RBC) membrane cloaking demonstrates stronger affinity with fibrin and more enrichment at the thrombus site. The Fol with RBC cloaking shows quick and efficient thrombolysis efficacy in vivo with less bleeding risk, more excellent blood compatibility, and better biosafety when compared with the clinical drug urokinase (UK).