This review presents a historical outline of the research on vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum, one of the canonical members of the VAO/PCMH flavoprotein family. After describing its discovery and initial biochemical characterization, we discuss the physiological role, substrate scope, and catalytic mechanism of VAO, and review its three-dimensional structure and mechanism of covalent flavinylation. We also explain how protein engineering provided a deeper insight into the role of certain amino acid residues in determining the substrate specificity and enantioselectivity of the enzyme. Finally, we summarize recent computational studies about the migration of substrates and products through the enzyme's structure and the phylogenetic distribution of VAO and related enzymes.This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.The reversible (de)carboxylation of unsaturated carboxylic acids is carried out by the UbiX-UbiD system, ubiquitously present in microbes. The biochemical basis of this challenging reaction has recently been uncovered by the discovery of the UbiD cofactor, prenylated FMN (prFMN). This heavily modified flavin is synthesized by the flavin prenyltransferase UbiX, which catalyzes the non-metal dependent prenyl transfer from dimethylallyl(pyro)phosphate (DMAP(P)) to the flavin N5 and C6 positions, creating a fourth non-aromatic ring. Following prenylation, prFMN undergoes oxidative maturation to form the iminium species required for UbiD activity. prFMNiminium acts as a prostethic group and is bound via metal ion mediated interactions between UbiD and the prFMNiminium phosphate moiety. The modified isoalloxazine ring is place adjacent to the E(D)-R-E UbiD signature sequent motif. The fungal ferulic acid decarboxylase Fdc from Aspergillus niger has emerged as a UbiD-model system, and has yielded atomic level insight into the prFMNiminium mediated (de)carboxylation. A wealth of data now supports a mechanism reliant on reversible 1,3 dipolar cycloaddition between substrate and cofactor for this enzyme. https://www.selleckchem.com/products/heparan-sulfate.html This poses the intriguing question whether a similar mechanism is used by all UbiD enzymes, especially those that act as carboxylases on inherently more difficult substrates such as phenylphosphate or benzene/naphthalene. Indeed, considerable variability in terms of oligomerization, domain motion and active site structure is now reported for the UbiD family.Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme secreted by fungi to assist lignocellulolytic enzymes in biomass degradation. Its catalytic flavodehydrogenase (DH) domain is a member of the glucose-methanol-choline oxidoreductase family similar to glucose oxidase. The catalytic domain is linked to an N-terminal electron transferring cytochrome (CYT) domain which interacts with lytic polysaccharide monooxygenase (LPMO) in oxidative cellulose and hemicellulose depolymerization. Based on CDH sequence analysis, four phylogenetic classes were defined. CDHs in these classes exhibit different structural and catalytic properties in regard to cellulose binding, substrate specificity, and the pH optima of their catalytic reaction or the interdomain electron transfer between the DH and CYT domain. The structure, reaction mechanism and kinetics of CDHs from Class-I and Class-II have been characterized in detail and recombinant expression allows the application in many areas, such as biosensors, biofuel cells biomass hydrolysis, biosynthetic processes, and the antimicrobial functionalization of surfaces.Bacterial luciferase is a flavin-dependent monooxygenase which is remarkable for its distinctive feature in transforming chemical energy to photons of visible light. The bacterial luciferase catalyzes bioluminescent reaction using reduced flavin mononucleotide, long-chain aldehyde and oxygen to yield oxidized flavin, corresponding acid, water and light at λmax around 490nm. The enzyme comprises of two non-identical α and β subunits, where α subunit is a catalytic center and β subunit is crucially required for maintaining catalytic function of the α subunit. The crystal structure with FMN bound and mutagenesis studies have assigned a number of amino acid residues that are important in coordinating critical reactions and stabilizing intermediates to attain optimum reaction efficiency. The enzyme achieves monooxygenation by generating C4a-hydroperoxyflavin intermediate that later changes its protonation status to become C4a-peroxyflavin, which is necessary for the nucleophilic attacking with aldehyde substrate. The decomposing of C4a-peroxyhemiacetal produces excited C4a-hydroxyflavin and acid product.