https://www.selleckchem.com/products/MK-1775.html Following the random variable frame, design points were selected from the input data generated through Monte Carlo Simulation. A total of four-mode shapes are analyzed in the present study. The comparison study was done to compare present work with results in the literature and they were found in good agreement. The stochastic parameters are Young's elastic modulus, shear modulus, and the Poisson ratio. Lognormal distribution of properties is assumed in the present work. The current soft computation models shrink the number of trials and were found computationally efficient as the MCS-based FE modelling. The paper presents a comparison of MARS, ANN-PSO, GPR, and ANFIS algorithm performance with the stochastic FE model based on TSDT.The spike protein in SARS-CoV-2 (SARS-2-S) interacts with the human ACE2 receptor to gain entry into a cell to initiate infection. Both Pfizer/BioNTech's BNT162b2 and Moderna's mRNA-1273 vaccine candidates are based on stabilized mRNA encoding prefusion SARS-2-S that can be produced after the mRNA is delivered into the human cell and translated. SARS-2-S is cleaved into S1 and S2 subunits, with S1 serving the function of receptor-binding and S2 serving the function of membrane fusion. Here, I dissect in detail the various domains of SARS-2-S and their functions discovered through a variety of different experimental and theoretical approaches to build a foundation for a comprehensive mechanistic understanding of how SARS-2-S works to achieve its function of mediating cell entry and subsequent cell-to-cell transmission. The integration of structure and function of SARS-2-S in this review should enhance our understanding of the dynamic processes involving receptor binding, multiple cleavage events, membrane fusion, viral entry, as well as the emergence of new viral variants. I highlighted the relevance of structural domains and dynamics to vaccine development, and discussed reasons for the sp