8-11.2 GHz) and exhibit a very high efficiency over than 90%, but only with the thickness of 1 mm (0.028 λ). Our device can help to solve the issues of absorption at large angles, and it can find wide applications in large antenna array design and other communication systems.Periodic guided-mode resonance structures which provide perfect reflection across sizeable spectral bandwidths have been known for decades and are now often referred to as metasurfaces and metamaterials. Although the underlying physics for these devices is explained by evanescent-wave excitation of leaky Bloch modes, a growing body of literature contends that local particle resonance is causative in perfect reflection. Here, we address differentiation of Mie resonance and guided-mode resonance in mediating resonant reflection by periodic particle assemblies. We treat a classic 2D periodic array consisting of silicon spheres. To disable Mie resonance, we apply an optimal antireflection (AR) coating to the spheres. https://www.selleckchem.com/products/e-7386.html Reflectance maps for coated and uncoated spheres demonstrate that perfect reflection persists in both cases. It is shown that the Mie scattering efficiency of an AR-coated sphere is greatly diminished. The reflectance properties of AR-coated spherical arrays have not appeared in the literature previously. From this viewpoint, these results illustrate high-efficiency resonance reflection in Mie-resonance-quenched particle arrays and may help dispel misconceptions of the basic operational physics.Ultrathin hybrid organic-inorganic perovskite (HOIP) films have significant potential for use in integrated high-performance photoelectric devices. However, the relatively low optical absorption capabilities of thinner films, particularly in the long-wavelength region, pose a significant challenge to the further improvement of photoelectrical conversion in ultrathin HOIP films. To address this problem, we propose a combining of ultrathin HOIP film with plasmonic metasurface to enhance the absorption of the film effectively. The metasurface excites localized surface plasmon resonances and deflects the reflected light within the HOIP film, resulting in an obvious enhancement of film absorption. Finite-difference time-domain simulation results reveal that the far-field intensities, deflection angles, and electric field distributions can be effectively varied by using metasurfaces with different arrangements. Examination of the reflection and absorption spectra reveals that embedding a specifically designed metasurface into the HOIP film produces an obvious enhancement in broadband optical absorption compared with pure HOIP films. We further demonstrate that this broadband absorption promotion mechanism can be effective at a wide range of HOIP film thicknesses. Comparison of the absorption spectra at various incidence angles of ultrathin HOIP films with and without underlying metasurfaces indicates that the addition of a metasurface can effectively promote absorption under wide-angle incident light illumination. Moreover, by extending the metasurface structure to a two-dimensional case, absorption enhancements insensitive to the incident polarization states have also been demonstrated. This proposed metasurface-assisted absorption enhancement method could be applied in designing novel high-performance thin-film solar cells and photodetectors.Mode-locked mid-infrared (MIR) fiber laser research has been dominated by the generation of pulses in the picosecond regime using saturable absorbers (SAs) and more recently frequency shifted feedback (FSF). Despite the significant emphasis placed on the development of materials to serve as the SAs for the MIR, published pulse durations have been substantially longer than what has been reported in the near-infrared (NIR). In this report we present experimental data supporting the view that the majority of demonstrations involving SAs and FSF have been limited by the presence of molecular gas absorption in the free-space sections of their cavities. We show that the pulse duration is directly linked to the width of an absorption-free region of the gaseous absorption profile and that the resulting optical spectrum is nearly always bounded by strong absorption features.Soliton dynamics can be used to temporally compress laser pulses to few fs durations in many different spectral regions. Here we study analytically, numerically and experimentally the scaling of soliton dynamics in noble gas-filled hollow-core fibers. We identify an optimal parameter region, taking account of higher-order dispersion, photoionization, self-focusing, and modulational instability. Although for single-shots the effects of photoionization can be reduced by using lighter noble gases, they become increasingly important as the repetition rate rises. For the same optical nonlinearity, the higher pressure and longer diffusion times of the lighter gases can considerably enhance the long-term effects of ionization, as a result of pulse-by-pulse buildup of refractive index changes. To illustrate the counter-intuitive nature of these predictions, we compressed 250 fs pulses at 1030 nm in an 80-cm-long hollow-core photonic crystal fiber (core radius 15 µm) to ∼5 fs duration in argon and neon, and found that, although neon performed better at a repetition rate of 1 MHz, stable compression in argon was still possible up to 10 MHz.We report a novel method to generate near-infrared supercontinuum (SC) in an ultrashort cavity configuration with only 11.5 m. With the continuous laser diode pump, a near-infrared SC with 26.8 W average output power and a spectrum ranging from 900 nm to 2000nm is demonstrated, and the laser diode pump to supercontinuum conversion efficiency is up to 60%. The spectral and power characteristics of the generated SC under different lengths of germanium-doped fiber (GDF) were carefully studied. This near-infrared SC generation method has the advantages of simple structure, low cost and good stability and also possesses the shortest fiber laser cavity length ever reported to the best of our knowledge.We demonstrate coherent averaging of the multi-heterodyne beat signal between two quantum cascade laser frequency combs in a master-follower configuration. The two combs are mutually locked by acting on the drive current to control their relative offset frequency and by radio-frequency extraction and injection locking of their intermode beat signal to stabilize their mode spacing difference. By implementing an analog common-noise subtraction scheme, a reduction of the linewidth of all heterodyne beat notes by five orders of magnitude is achieved compared to the free-running lasers. We compare stabilization and post-processing corrections in terms of amplitude noise. While they give similar performances in terms of signal-to-noise ratio, real-time processing of the stabilized signal is less demanding in terms of computational power. Lastly, a proof-of-principle spectroscopic measurement was performed, showing the possibility to reduce the amount of data to be processed by three orders of magnitude, compared to the free-running system.