https://www.selleckchem.com/products/etc-1002.html 05). Furthermore, fullerene supplementation decreased serum concentrations of inflammatory cytokine and lipopolysaccharide (LPS; a penetrability marker) compared to the DON-challenged group (p less then 0.05). The current study suggests that fullerene C60 improves intestinal antioxidant status against DON-induced oxidative stress in vitro and in vivo.In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.Many colon cancer patients show resistance to their treatments. Therefore, it is important to consider unique characteristic of each tumor to find the best treatment options for each patient. In this study, we develop a data driven mathematical model for interaction between the tumor microenvironment and FOLFIRI drug agents in colon cancer. Patients are divided into five di