https://www.selleckchem.com/products/g6pdi-1.html O-1602 treatment also pronouncedly ameliorated synaptic dysfunction by promoting the upregulation of PSD-95 and synaptophysin (SYN) proteins. Moreover, O-1602 concurrently down regulated the protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 pathway. This study indicates that O-1602 may reverse Aβ1-42-induced cognitive impairment and neurotoxicity in mice by inhibiting RhoA/ROCK2 pathway. Taken together, these findings suggest that GPR55 could be a novel and promising target for the treatment of AD.Ethanol consumption is a worldwide problem. Sensitivity to acute effects of ethanol influences the development of chronic ethanol abuse and ethanol dependence. Environmental and genetic factors have been found to contribute to differential effects of acute ethanol. Animal models have been employed to investigate these factors. An increasingly frequently utilized animal model in ethanol research is the zebrafish. A large proportion of ethanol studies with zebrafish have been conducted with adult zebrafish. However, high throughput drug and mutation screens are particularly well adapted to larval zebrafish. These studies are often carried out using the 96-well-plate that allows monitoring large numbers of fish efficiently. Here, we investigate the effects of acute (30 min long) ethanol exposure in 8-day post-fertilization (dpf) old zebrafish. We compare four genetically distinct populations (strains) of zebrafish, measuring numerous parameters of their swim path in two well sizes, i.e., in the 96-well-plate (small volume wells) and in the 6-well-plate (large volume wells). In general, we found that the highest dose of ethanol (1% vol/vol) reduced swim speed, increased duration of immobility, increased turn angle, and increased intra-individual variance of turn angle, while the intermediate dose (0.5%) had a less strong effect, compared to control. However, we also found that these ethanol effects were