https://www.selleckchem.com/products/ly333531.html Hence, the selected E. coli strains exhibited promising probiotic properties with neither enterotoxin nor LPS producibility was detected. The present results confirm the existence of friendly and harmless E. coli strains in human microbiota as potential probiotics.Probiotic is an alternative method to treat intestinal infection disease caused by antibiotic-resistant bacteria. In this study, Lactococcus lactis KA-FF 1-4 demonstrated to have the potential to inhibit the growth of Vancomycin-resistant enterococci (VRE) by producing anti-microbial substance. In co-culture, L. lactis KA-FF 1-4 (108 CFU/mL) inhibited the growth of VRE from 103-104 CFU/mL to zero after 6 h of exposure. However, in a gut model contained human gut microbiota, this anti-VRE activity of L. lactis KA-FF 1-4 was reduced to only 3.59-6.12%. The unexpected difference in efficacy between the experimental models could be explained by the fact that the growth of L. lactis KA-FF 1-4 was stable in the gut model. Leaving aside these limitations, we observed that adding L. lactis KA-FF 1-4 into the human gut model containing VRE was able to enhance microbial richness and diversity. Specifically, a higher abundance of beneficial microbes from the group of Bifidobacterium spp. and Bacteroides fragilis. L. lactis KA-FF 1-4 also enhanced the abundance of Parabacteroides, Lactococcus, and Fusobacterium and promoted the production of lactic acid in the gut model. However, these effects were not observed in the gut model without L. lactis KA-FF 1-4. Even though this study could not demonstrate a significant anti-VRE effect of the L. lactis KA-FF 1-4 in a gut model, our results still offer evidence that L. lactis KA-FF 1-4 could positively modulate the gut microbiota by promoting the growth of beneficial microbes and their metabolite. L. lactis KA-FF 1-4 has probiotic properties to fight against VRE infection, therefore further investigation in animal model is n