https://www.selleckchem.com/products/k03861.html Prolonging the cooking time (300 min) of whole aged Bambara groundnuts (32 weeks), necessary for obtaining palatable textures, decreased the overall Mg, Fe and Zn concentrations by 72%, 57% and 48%, respectively. Storage-induced ageing significantly decreased Ca solubility and bioaccessibility. Bioaccessibility of trace minerals in Bambara groundnuts is low, especially for Fe, and cannot be improved by dehulling or cooking treatments. Ageing did not influence Fe and Zn bioaccessibility. Populations relying on both fresh and aged Bambara groundnuts may still be at risk for mineral deficiencies.We report here the synthesis, full characterisation and first application in catalysis of novel Au(i), Au(iii) and Pt(ii) carbene-type complexes formed from bis(pyridyl)allenes. The catalytic activity of the new Au(i)-complexes in the cyclisation of 1,6-enynes, a benchmark reaction for new Au and Pt complexes, was comparable to Au(i)-state-of-the-art catalysts used in these reactions. Reactions with the new Au(iii)- and Pt(ii)-complexes occurred under milder conditions than those reported with AuCl3 and PtCl2.The power released by magnetic nanoparticles submitted to an alternating driving field is temperature dependent owing to the variation of the fundamental magnetic properties. Therefore, the heating efficiency of magnetic nanoparticles for applications in precision nanomedicine (such as magnetic hyperthermia or heat-assisted drug delivery) can be significantly affected by the local instantaneous temperature of the host medium. A rate equation approach is used to determine the hysteretic properties and the power released by magnetite nanoparticles, and the heat transport equation is solved in a simple geometry with boundary conditions appropriate to both in-lab experiments and in vivo applications. Size plays a fundamental role in determining the heating efficiency of magnetic nanoparticles; above a critical size, nanoparticle