We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter. Now that the internet is more accessible to an increasing number of populations worldwide, many rely on the internet for their information about their daily lives. This includes people concerned about their health to students to sometimes also doctors. Since YouTube is the second most visited website, our aim was to evaluate the content-quality of YouTube videos relating to meningitis. We chose the first 30 videos for four different search phrases meningitis, bacterial meningitis, viral meningitis, fungal meningitis and meningitis signs. The validated DISCERN scoring criteria was used to assess the videos by two raters independently. Qualitative data, quantitative data and the source of upload of each video were analyzed for video quality and audience engagement. Out of 150 videos, 84 videos met the inclusion criteria. The mean DISCERN score was 34.6 ± 9.76 (out of a total 75), which indicates that the quality of YouTube videos on meningitis is poor. There is an excellent reliability between the two raters. Videos had a higher audience engagement via a greater number of daily views and comments when they included the definition, symptoms, prognosis, animation, diagrams, and an anatomical explanation of the meninges (P < 0.0001 for all). The quality of YouTube videos on meningitis is poor, however, we have listed the videos which may be most effective for patient education for reference. Our quality and engagement analysis may help content creators make better health content on meningitis. The quality of YouTube videos on meningitis is poor, however, we have listed the videos which may be most effective for patient education for reference. Our quality and engagement analysis may help content creators make better health content on meningitis.The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC50 value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. https://www.selleckchem.com/products/Y-27632.html Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.Bioaccumulation of environmental contaminants in mammalian predators can serve as an indicator of ecosystem health. We examined mercury concentrations of raccoons (Procyon lotor; n = 37 individuals) and striped skunks (Mephitis mephitis; n = 87 individuals) in Suisun Marsh, California, a large brackish marsh that is characterized by contiguous tracts of tidal marsh and seasonally impounded wetlands. Mean (standard error; range) total mercury concentrations in adult hair grown from 2015 to 2018 were 28.50 μg/g dw (3.05 μg/g dw; range 4.46-81.01 μg/g dw) in raccoons and 4.85 μg/g dw (0.54 μg/g dw; range 1.53-27.02 μg/g dw) in striped skunks. We reviewed mammalian hair mercury concentrations in the literature and raccoon mercury concentrations in Suisun Marsh were among the highest observed for wild mammals. Although striped skunk hair mercury concentrations were 83% lower than raccoons, they were higher than proposed background levels for mercury in mesopredator hair (1-5 μg/g). Hair mercury concentrations in skunks and raccoons were not related to animal size, but mercury concentrations were higher in skunks in poorer body condition. Large inter-annual differences in hair mercury concentrations suggest that methylmercury exposure to mammalian predators varied among years. Mercury concentrations of raccoon hair grown in 2017 were 2.7 times greater than hair grown in 2015, 1.7 times greater than hair grown in 2016, and 1.6 times greater than hair grown in 2018. Annual mean raccoon and skunk hair mercury concentrations increased with wetland habitat area. Furthermore, during 2017, raccoon hair mercury concentrations increased with the proportion of raccoon home ranges that was wetted habitat, as quantified using global positioning system (GPS) collars. The elevated mercury concentrations we observed in raccoons and skunks suggest that other wildlife at similar or higher trophic positions may also be exposed to elevated methylmercury bioaccumulation in brackish marshes.