https://www.selleckchem.com/products/ngi-1ml414.html The weld joints of sprayed 2195-T6 and cast 2195-T8 aluminium-lithium alloy were created using tungsten inert gas with filler wire. The microstructures and mechanical properties of the weld joints were examined. The results of the microstructure analysis showed that the width of the equiaxed grain zone (EQZ) and the amount of the second phase θ'(Al2Cu) was greater in the weld joint of the cast 2195-T8 Al-Li alloy than that of the sprayed 2195-T6 Al-Li alloy. Tensile testing indicated that failures occurred in the EQZ and partially melted zone (PMZ) for both weld joints. The tensile strength and elongation of the weld joints of the sprayed 2195-T6 and cast 2195-T8 Al-Li alloys were about 68.2%, 89.7%, and 50.7% and 28.3% those of the base metal in the joint, respectively. The cast 2195-T8 Al-Li alloy joint had more pores and cracks, resulting in lower tensile strength and elongation than those in the sprayed alloy. Further, the tensile fracture surface morphology indicated that the fracture mode of the sprayed 2195-T6 Al-Li alloy was a mixed fracture mode dominated by plastic fracture and that of the cast 2195-T8 Al-Li alloy joints was a mixed fracture mode dominated by brittle fracture.This study was conducted to monitor the macrophage infiltration of atopic dermatitis (AD)-like skin lesions and to evaluate the effects of anti-AD therapeutic agents in immunocompetent mice via optical reporter-gene-based molecular imaging. The enhanced firefly luciferase (effluc)-expressing macrophage cell line (Raw264.7/effluc) was intravenously introduced into mice with 2,4-dinitrochlorobenzene (DNCB)-induced AD, followed by bioluminescent imaging (BLI). After in vivo imaging, AD-like skin lesions were excised, and ex vivo imaging and Western blotting were conducted to determine the presence of infused macrophages. Finally, the therapeutic effect of dexamethasone (DEX), an AD-modulating agent, was evaluated via macrophage trackin