https://www.selleckchem.com/products/CGS-21680-hydrochloride.html Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.This study aimed to evaluate the reduction in vancomycin through intermittent haemodialysis (IHD) and prolonged haemodialysis (PHD) in acute kidney injury (AKI) patients with sepsis and to identify the variables associated with subtherapeutic concentrations. A prospective study was performed in patients admitted at an intensive care unit (ICU) of a Brazilian hospital. Blood samples were collected at the start of dialytic therapy, after 2 and 4 h of treatment and at the end of therapy to determine the serum concentration of vancomycin and thus perform pharmacokinetic evaluation and PK/PD modelling. Twenty-seven patients treated with IHD, 17 treated with PHD for 6 h and 11 treated with PHD for 10 h were included. The reduction in serum concentrations of vancomycin after 2 h of therapy was 26.65 ± 12.64% and at the end of dialysis was 45.78 ± 12.79%, higher in the 10-h PHD group, 57.70% (40, 4