https://www.selleckchem.com/products/cnqx.html We incorporate four different plant transporters, cofactor regeneration mechanisms, and optimized growth conditions into our yeast platform to achieve improvements in de novo hyoscyamine and scopolamine production of over 100-fold (480 μg/L) and 7-fold (172 μg/L). Finally, we leverage computational tools for biosynthetic pathway prediction to produce two different classes of TA derivatives, nortropane alkaloids and tropane N-oxides, from simple precursors. Our work highlights the importance of cellular transport optimization in recapitulating complex PNP biosyntheses in microbial hosts and illustrates the utility of computational methods for gene discovery and expansion of heterologous biosynthetic diversity.Multicontrast X-ray imaging with high resolution and sensitivity using Talbot-Lau interferometry (TLI) offers unique imaging capabilities that are important to a wide range of applications, including the study of morphological features with different physical properties in biological specimens. The conventional X-ray TLI approach relies on an absorption grating to create an array of micrometer-sized X-ray sources, posing numerous limitations, including technical challenges associated with grating fabrication for high-energy operations. We overcome these limitations by developing a TLI system with a microarray anode-structured target (MAAST) source. The MAAST features an array of precisely controlled microstructured metal inserts embedded in a diamond substrate. Using this TLI system, tomography of a Drum fish tooth with high resolution and tri-contrast (absorption, phase, and scattering) reveals useful complementary structural information that is inaccessible otherwise. The results highlight the exceptional capability of high-resolution multicontrast X-ray tomography empowered by the MAAST-based TLI method in biomedical applications.Biological systems have a remarkable capability of synthesizing multifunctional mate