A well-supported phylogenetic tree revealed the same seven species, while morphological analysis showed negligible phenotypic differentiation among the species revealed. We demonstrate that mites can undergo changes in their DNA accompanied by morphological stasis lasting at least 80 MY.Plant specific mitoviruses in the 'genus' Mitovirus (Narnaviridae) and their integrated sequences (non-retroviral endogenous RNA viral elements or NERVEs) have been recently identified in various plant lineages. However, the sparse phylogenetic coverage of complete plant mitochondrial genome (mitogenome) sequences and the non-conserved nature of mitochondrial intergenic regions have hindered comparative studies on mitovirus NERVEs in plants. In this study, 10 new mitogenomes were sequenced from legumes (Fabaceae). Based on comparative genomic analysis of 27 total mitogenomes, we identified mitovirus NERVEs and transposable elements across the family. All legume mitogenomes included NERVEs and total NERVE length varied from ca. 2 kb in the papilionoid Trifolium to 35 kb in the mimosoid Acacia. Most of the NERVE integration sites were in highly variable intergenic regions, however, some were positioned in six cis-spliced mitochondrial introns. In the Acacia mitogenome, there were L1-like transposon sequences including an almost full-length copy with target site duplications (TSDs). The integration sites of NERVEs in four introns showed evidence of L1-like retrotransposition events. Phylogenetic analysis revealed that there were multiple instances of precise deletion of NERVEs between TSDs. This study provides clear evidence that a L1-like retrotransposition mechanism has a long history of contributing to the integration of viral RNA into plant mitogenomes while microhomology-mediated deletion can restore the integration site.Micro/nanotextured topographies (MNTs) can modulate cell-biomaterial interactions mostly by their controllable geometrics. Among them, TiO2 nanotubes, regarded as having a highly controllable nanoscale geometry, have been extensively investigated and applied and significantly affect diameter-dependent cell biological behaviors. In this study, we used five typical MNTs decorated with TiO2 nanotubes with diameters of 30, 50, 70, 100 and 120 nm to explore the optimal nanotube diameter for improving the biofunctional properties and to more deeply understand the underlying mechanisms by which these MNTs affect osteogenic differentiation by revealing the effect of beta1-integrin/Hedgehog-Gli1 signaling on this process. The MNTs affected MG63 osteoblast-like cell spreading, osteogenic gene expression (BMP-2, Runx2 and ALP), mineralization and ALP activity in a diameter-dependent pattern, and the optimal TiO2 nanotube diameter of 70 nm provided the best microenvironment for osteogenic differentiation as well as beta1-integrin/Hedgehog-Gli1 signaling activation. This enhanced osteogenic differentiation by the optimal-diameter TiO2 nanotubes of 70 nm was attenuated via suppression of the beta1-integrin/ Hedgehog-Gli1 signaling, which indicated a significant role of this pathway in mediating the diameter-dependent osteogenic differentiation promotional effect of MNTs with different TiO2 nanotube diameters. These results might provide deeper insights into the signal transduction mechanisms by which different nanoscale geometries influence cellular functions for biomaterial modification and biofunctionalization.Streptococcus agalactiae evasion from the human defense mechanisms has been linked to the production of DNases. These were proposed to contribute to the hypervirulence of S. agalactiae ST17/capsular-type III strains, mostly associated with neonatal meningitis. We performed a comparative genomic analysis between ST17 and ST19 human strains with different cell tropism and distinct DNase production phenotypes. All S. agalactiae ST17 strains, with the exception of 2211-04, were found to display DNase activity, while the opposite scenario was observed for ST19, where 1203-05 was the only DNase(+) strain. The analysis of the genetic variability of the seven genes putatively encoding secreted DNases in S. agalactiae revealed an exclusive amino acid change in the predicted signal peptide of GBS0661 (NucA) of the ST17 DNase(-), and an exclusive amino acid change alteration in GBS0609 of the ST19 DNase(+) strain. Further core-genome analysis identified some specificities (SNVs or indels) differentiating the DNase(-) ST17 2211-04 and the DNase(+) ST19 1203-05 from the remaining strains of each ST. The pan-genomic analysis evidenced an intact phage without homology in S. agalactiae and a transposon homologous to TnGBS2.3 in ST17 DNase(-) 2211-04; the transposon was also found in one ST17 DNase(+) strain, yet with a different site of insertion. A group of nine accessory genes were identified among all ST17 DNase(+) strains, including the Eco47II family restriction endonuclease and the C-5 cytosine-specific DNA methylase. None of these loci was found in any DNase(-) strain, which may suggest that these proteins might contribute to the lack of DNase activity. In summary, we provide novel insights on the genetic diversity between DNase(+) and DNase(-) strains, and identified genetic traits, namely specific mutations affecting predicted DNases (NucA and GBS0609) and differences in the accessory genome, that need further investigation as they may justify distinct DNase-related virulence phenotypes in S. agalactiae.SARS-CoV-2 is currently causing major havoc worldwide with its efficient transmission and propagation. To track the emergence as well as the persistence of mutations during the early stage of the pandemic, a comparative analysis of SARS-CoV-2 whole proteome sequences has been performed by considering manually curated 31,389 whole genome sequences from 84 countries. Among the 7 highly recurring (percentage frequency≥10%) mutations (Nsp2T85I, Nsp6L37F, Nsp12P323L, SpikeD614G, ORF3aQ57H, N proteinR203K and N proteinG204R), N proteinR203K and N protein G204R are co-occurring (dependent) mutations. https://www.selleckchem.com/products/sch-900776.html Nsp12P323L and SpikeD614G often appear simultaneously. The highly recurring SpikeD614G, Nsp12P323L and Nsp6L37F as well as moderately recurring (percentage frequency between ≥1 and less then 10%) ORF3aG251V and ORF8L84S mutations have led to4 major clades in addition to a clade that lacks high recurring mutations. Further, the occurrence of ORF3aQ57H&Nsp2T85I, ORF3aQ57H and N proteinR203K&G204R along with Nsp12P323L&SpikeD614G has led to 3 additional sub-clades.