https://www.selleckchem.com/products/bptes.html This research focuses on the feasibility of using diesel-palm fatty acid distillate ethyl ester (PFADE)-ethanol in a direct injection diesel engine without any major modifications. Hydrous ethanol was selected for blending in diesel to produce diesohol. The palm fatty acid distillate (PFAD) and PFADE were directly blended in ethanol and diesel. A comparative study of the phase stability in diesel-PFAD-hydrous ethanol and diesel-PFADE-hydrous ethanol was performed with varied blend proportions. The fuel properties, emissions (CO, CO2, NO x , O2, exhaust gas temperature), and fuel consumptions of diesel, PFADE, diesel-PFADE-hydrous ethanol were compared to evaluate the feasibilities of these fuel blends in a diesel engine at the engine speeds 1100, 1400, 1700, 2000, and 2300 rpm. At 2300 rpm, the maximum CO2 emission with 10 wt % hydrous ethanol in the blend was approximately 2%. With regard to fuel consumption, clearly, 20 wt % diesohol gave higher consumption than 10 wt % ethanol at a maximum engine speed of 2300 rpm. The blend D50PE40E10 gave the lowest fuel consumption, while the maximum fuel consumption was with the D10PE70E20 blend. Therefore, both 10 and 20 wt % hydrous ethanol in the diesel fuel are alternatives usable in a diesel engine without modifications.Here, we report the presence of ferromagnetism in hybrid nickel-boron nitride nanotubes (BNNTs) with an ordered structure, synthesized by chemical vapor deposition using elemental boron, nickel oxide as the catalyst, and ammonia gas as the source for nitrogen. In previous studies, the nanotubes were synthesized with two metal oxide catalysts, whereas here, only a single catalyst was used. The nanotube's structure was determined by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Purity of the nanotubes synthesized at 1150 °C was exceptional and this was determined by Raman spectroscopy. The average diamet