https://www.selleckchem.com/products/trastuzumab-deruxtecan.html Population size estimation is performed for several reasons including disease surveillance and control, for example to design adequate control strategies such as vaccination programs or to estimate a vaccination campaign coverage. In this study, we aimed at investigating the possibility of using Unmanned Aerial Vehicles (UAV) to estimate the size of free-roaming domestic dog (FRDD) populations and compare the results with two regularly used methods for population estimations foot-patrol transect survey and the human dog ratio estimation. Three studies sites of one square kilometer were selected in Petén department, Guatemala. A door-to-door survey was conducted in which all available dogs were marked with a collar and owner were interviewed. The day after, UAV flight were performed twice during two consecutive days per study site. The UAV's camera was set to regularly take pictures and cover the entire surface of the selected areas. Simultaneously to the UAV's flight, a foot-patrol transect survey was perform mark on the spotted dogs. Therefore, no CR model could be implemented to estimate the size of the FRDD using UAV. We discussed ways for improving the use of UAV for this purpose, such as flying at a lower altitude in study area wisely chosen. We also suggest to investigate the possibility of using infrared camera and automatic detection of the dogs to increase visibility of the dogs in the pictures and limit workload of finding them. Finally, we discuss the need of using models, such as spatial capture-recapture models to obtain reliable estimates of the FRDD population. This publication may provide helpful directions to design dog population size estimation methods using UAV.In 31 participants who started first-line antiretroviral therapy in the NEAT 001/ANRS 143 clinical trial, we found after 96 weeks a statistically significant increase in blood telomere length (TL) of 0.04 (T/S Ratio) (p = 0.0