The mimicking of evolution on a laboratory timescale to enhance biocatalyst specificity, substrate utilization activity, and/or product formation, is an effective and well-established approach that does not involve genetic engineering or regulatory details of the microorganism. The present work employed an evolutionary adaptive approach to improve the lignocellulose deconstruction capabilities of the strain by inducing the expression of laccase, a multicopper oxidase, in Geobacillus sp. strain WSUCF1. This bacterium is highly efficient in depolymerizing unprocessed lignocellulose, needing no preprocessing/pretreatment of the biomasses. However, it natively produces low levels of laccase. After 15 rounds of serially adapting this thermophilic strain in the presence of unprocessed corn stover as the selective pressure, we recorded a 20-fold increase in catalytic laccase activity, at 9.23 ± 0.6 U/mL, in an adapted yet stable strain of Geobacillus sp. WSUCF1, compared with the initial laccase production (0.46 ± 0.04 U/mL) obtained with the unadapted strain grown on unprocessed corn stover before optimization. Chemical composition analysis demonstrated that lignin removal by the adapted strain was 22 wt.% compared with 6 wt.% removal by the unadapted strain. These results signify a favorable prospect for fast, cost competitive bulk production of this thermostable enzyme. Also, this work has practical importance, as this fast adaptation of the Geobacillus sp. strain WSUCF1 suggests the possibility of growing industrial quantities of Geobacillus sp. strain WSUCF1 cells as biocatalysts on reasonably inexpensive carbon sources for commercial use. This work is the first application of the adaptive laboratory evolution approach for developing the desired phenotype of enhanced ligninolytic capability in any microbial strain.The freeze-drying of complex formulations, such as liposomes, is challenging, particularly if dispersions contain residual organic solvents. This work aimed to investigate the effects of possible protectants, namely sucrose, trehalose and/or poly(vinyl pyrrolidone) (PVP), on the main features of the dried product using a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-based liposomal dispersion prepared by ethanol injection and containing ethanol up to 6%, as a model. The interactions among vesicles and protectants were preliminary screened by Molecular Dynamics (MD) simulations, which have been proved useful in rationalizing the selection of protectant(s). The freeze-drying protocol was based on calorimetric results. Overall data suggested a stronger cryo-protectant effect of trehalose, compared with sucrose, due to stronger interactions with the DPPC bilayer and the formation of highly ordered clusters around the lipids. The effect further improved in the presence of PVP. Differently from the other tested protectants, the selected trehalose/PVP combination allows to preserve liposome size, even in the presence of 6% ethanol, as demonstrated by Nanoparticle Tracking Analysis (NTA). Nevertheless, it should be also underlined that cakes blew out at an ethanol concentration higher than 1% v/v, probably due to the poor cohesion within the cake and solvent vapour pressure upon sublimation.1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ) are clinically promising biologically active chemicals that have been shown to stimulate the aryl hydrocarbon receptor (AhR) signaling pathway, but whether they are direct or indirect ligands or activate the AhR in a ligand-independent manner is unknown. Given the structural diversity of AhR ligands, multiple mechanisms of AhR activation of gene expression, and species differences in AhR ligand binding and response, we examined the ability of 1,2-NQ and 1,4-NQ to bind to and activate the mouse and human AhRs using a series of in vitro AhR-specific bioassays and in silico modeling techniques. Both NQs induced AhR-dependent gene expression in mouse and human hepatoma cells, but were more potent and efficacious in human cells. 1,2-NQ and 1,4-NQ stimulated AhR transformation and DNA binding in vitro and was inhibited by AhR antagonists. Ligand binding analysis confirmed the ability of 1,2-NQ and 1,4-NQ to competitively bind to the AhR ligand binding cavity and the molecular determinants for interactions were predicted by molecular modeling methods. NQs were shown to bind distinctly differently from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and differences were also observed between species. Mutation of amino acid residues (F289, M334, and M342) involved in critical NQAhR binding interactions, decreased NQ- and AhR-dependent gene expression, consistent with a role for these residues in binding and activation of the AhR by NQs. These studies provide insights into the molecular mechanism of action of NQs and contribute to the development of emerging NQ-based therapeutics.Angiogenesis is essential for growth, progression, and metastasis of solid tumors. Vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) and angiopoietin (ANGPT)/ tyrosine kinase endothelial (TEK) signaling plays an important role in regulating angiogenesis. Very little is known about the effects of single-nucleotide polymorphisms (SNPs) in angiogenesis-related genes on treatment outcome in head and neck squamous cell carcinoma (HNSCC). Therefore, we evaluated the association between SNPs in ANGPT1, ANGPT2, TEK, VEGF, VEGFR1, and VEGFR2 genes and five clinical endpoints in 422 HNSCC patients receiving radiotherapy alone or combined with chemotherapy. Multivariate analysis showed an association of ANGPT2 rs3739391, rs3020221 and TEK rs639225 with overall survival, and VEGF rs2010963 with overall and metastasis-free survival. https://www.selleckchem.com/products/ly333531.html VEGFR2 rs1870377 and VEGF rs699947 affected local recurrence-free survival in all patients. In the combination treatment subgroup, rs699947 predicted local, nodal, and loco-regional recurrence-free survival, whereas VEGFR2 rs2071559 showed an association with nodal recurrence-free survival. However, these associations were not statistically significant after multiple testing correction. Moreover, a strong cumulative effect of SNPs was observed that survived this adjustment. These SNPs and their combinations were independent risk factors for specific endpoints. Our data suggest that certain germline variants in ANGPT2/TEK and VEGF/VEGFR2 axes may have predictive and prognostic potential in HNSCC treated with radiation or chemoradiation.