https://www.selleckchem.com/products/pdd00017273.html 27 s in HIW vs. LIW).The low-power sensing platform proposed by the Convergence project is foreseen as a wireless, low-power and multifunctional wearable system empowered by energy-efficient technologies. This will allow meeting the strict demands of life-style and healthcare applications in terms of autonomy for quasi-continuous collection of data for early-detection strategies. The system is compatible with different kinds of sensors, able to monitor not only health indicators of individual person (physical activity, core body temperature and biomarkers) but also the environment with chemical composition of the ambient air (NOx, COx, NHx particles) returning meaningful information on his/her exposure to dangerous (safety) or pollutant agents. In this article, we introduce the specifications and the design of the low-power sensing platform and the different sensors developed in the project, with a particular focus on pollutant sensing capabilities and specifically on NO2 sensor based on graphene and CO sensor based on polyaniline ink.T cells represent a critical arm of our immune defense against pathogens. Over the past two decades, considerable inroads have been made in understanding the fundamental principles underpinning the molecular presentation of peptide-based antigens by the Major Histocompatibility Complex molecules (MHC-I and II), and their molecular recognition by specialized subsets of T cells. However, some T cells can recognize lipid-based antigens presented by MHC-I-like molecules that belong to the Cluster of Differentiation 1 (CD1) family. Here, we will review the advances that have been made in the last five years to understand the molecular mechanisms orchestrating the presentation of novel endogenous and exogenous lipid-based antigens by the CD1 glycoproteins and their recognition by specific populations of CD1-reactive T cells.A regio- and diastereoselective synthesis of two types of dispiro