https://www.selleckchem.com/products/17-DMAG,Hydrochloride-Salt.html In this work, Hcy-OB, a novel hemicyanine-based biocompatible dual-function fluorescence probe for bisulfite and H2O2 detection is designed and synthesized. Based on a 1,4-addition reaction, Hcy-OB can be used for bisulfite detection with fast response, high sensitivity and low detection limit (120 nM). In addition, the probe is successfully applied to the detection of bisulfite in aqueous solution. Furthermore, Hcy-OB shows excellent performance for hydrogen peroxide detection with the oxidation of phenylboronic acid. Hcy-OB shows excellent selectivity to H2O2 over other interfering substances with detection limit of H2O2 is calculated to be 70 nM. Most importantly, due to its good cell membrane permeability and low cytotoxicity, Hcy-OB has been applied to monitor and image H2O2 in living cells and mice.In recent years, Raman spectroscopy has become an established method to study medical, biological or environmental samples. Since Raman spectroscopy is a phenotypic method, many parameters can influence the spectra. One of these parameters is the concentration of CO2, as this never remains stable in nature, but always adjusts itself in a dynamic equilibrium. So, it is obvious that the concentration of CO2 cannot be controlled but it might have a big impact on the bacteria and bacterial composition in medical samples. When using a phenotypic method like Raman spectroscopy it is also important to know the influence of CO2 to the dataset. To investigate the influence of CO2 towards Raman spectra we cultivated E. coli at different concentration of CO2 since this bacterium is able to switch metabolism from aerobic to microaerophilic conditions. After applying statistic methods small changes in the spectra became visible and it was even possible to observe the change of metabolism in this species according to the concentration of CO2.Stolons and rhizomes are modified stems for vegetative reproduction. Wh