Our data reveal that the pioneering activity of Grh is temporally regulated and likely influenced by additional factors expressed at a given developmental stage. © 2020. Published by The Company of Biologists Ltd.Neocortex development during embryonic stages requires the precise control of mRNA metabolism. Human antigen R (HuR) is a well-studied mRNA-binding protein that regulates mRNA metabolism, and it is highly expressed in the neocortex during developmental stages. Deletion of HuR does not impair neural progenitor cell proliferation or differentiation, but it disturbs the laminar structure of the neocortex. We report that HuR is expressed in postmitotic projection neurons during mouse brain development. Specifically, depletion of HuR in these neurons led to a mislocalization of CDP+ neurons in deeper layers of the cortex. Time-lapse microscopy showed that HuR was required for the promotion of cell motility in migrating neurons. PCR array identified profilin 1 (Pfn1) mRNA as a major binding partner of HuR in neurons. HuR positively mediated the stability of Pfn1 mRNA and influenced actin polymerization. Overexpression of Pfn1 successfully rescued the migration defects of HuR-deleted neurons. Our data reveal a post-transcriptional mechanism that maintains actin dynamics during neuronal migration. © 2020. Published by The Company of Biologists Ltd.17β-Estradiol induces the postnatal development of mammary gland and influences breast carcinogenesis by binding to the estrogen receptor ERα. ERα acts as a transcription factor but also elicits rapid signaling through a fraction of ERα expressed at the membrane. Here, we have used the C451A-ERα mouse model mutated for the palmitoylation site to understand how ERα membrane signaling affects mammary gland development. Although the overall structure of physiological mammary gland development is slightly affected, both epithelial fragments and basal cells isolated from C451A-ERα mammary glands failed to grow when engrafted into cleared wild-type fat pads, even in pregnant hosts. Similarly, basal cells purified from hormone-stimulated ovariectomized C451A-ERα mice did not produce normal outgrowths. Ex vivo, C451A-ERα basal cells displayed reduced matrix degradation capacities, suggesting altered migration properties. More importantly, C451A-ERα basal cells recovered in vivo repopulating ability when co-transplanted with wild-type luminal cells and specifically with ERα-positive luminal cells. Transcriptional profiling identified crucial paracrine luminal-to-basal signals. Altogether, our findings uncover an important role for membrane ERα expression in promoting intercellular communications that are essential for mammary gland development. © 2020. Published by The Company of Biologists Ltd.Parvalbumin-expressing interneurons in cortical networks are coupled by gap-junctions, forming a syncytium that supports propagating epileptiform discharges, induced by 4-aminopyridine. It remains unclear, however, whether these propagating events occur under more natural states, without pharmacological blockade. In particular, we investigated whether propagation also happens when extracellular K+ rises, as is known to occur following intense network activity, such as during seizures. We examined how increasing [K+]o affects the likelihood of propagating activity away from a site of focal (200-400µm) optogenetic activation of parvalbumin-expressing interneurons. Activity was recorded using a linear 16-electrode array placed along layer V of primary visual cortex. At baseline levels of [K+]o (3.5mM), induced activity was recorded only within the illuminated area. However, when [K+]o was increased above a threshold level (50th percentile= 8.0mM; interquartile range= 7.5-9.5mM), time-locked, fast-spiking unit acum of parvalbumin(PV)-expressing interneurons, in conditions that are known to exist at times within the brain. Previous work has only shown gap-junction coordination very locally, through directly connected cells, or induced at a distance by pharmacological means. We show that cell-class specific spread is facilitated by raised extracellular K+ This is highly pertinent to what happens at the onset of, and during, seizures, when extracellular K+ can rise rapidly to levels well in excess of the measured threshold for propagation. Our data suggests that interneuronal coupling will be enhanced at this time, and this has clear implications for the behaviour of these cells as seizures progress. Copyright © 2020 Papasavvas et al.The multitude of neuronal subtypes and extensive interconnectivity of the mammalian brain presents a substantial challenge to those seeking to decipher its functions. While the molecular mechanisms of several neuronal functions remain poorly characterized, advances in Next-Generation Sequencing (NGS) and gene-editing technology have begun to close this gap. The Clustered Regularly Interspaced Palindromic Repeats - CRISPR Associated Protein (CRISPR-Cas) system has emerged as a powerful genetic tool capable of manipulating the genome of essentially any organism and cell type, an attribute which has advanced our understanding of complex neurological diseases by enabling the rapid generation of novel, disease-relevant in vitro and transgenic animal models. In this review, we discuss recent developments in the rapidly accelerating field of CRISPR-mediated genome engineering. We begin with an overview of the canonical function of the CRISPR platform, followed by a functional review of its many adaptations, with an emphasis on its applications for genetic interrogation of the normal and diseased nervous system. Additionally, we discuss limitations of the CRISPR editing system and suggest how future modifications to existing platforms may advance our understanding of the brain. https://www.selleckchem.com/products/cbr-470-1.html Copyright © 2020 Sandoval et al.Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk". Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanogaster contains only 16 known protein-coding genes and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are sub-fertile, but FDY mutant males had no detectable fertility defects.