In situ quantitative measurements of neurotransmitter activities can provide useful insights into the underlying mechanisms of stem cell differentiation, the formation of neuronal networks, and neurodegenerative diseases. Currently, neurotransmitter detection methods suffer from poor spatial resolution, nonspecific detection, and a lack of in situ analysis. To address this challenge, herein, we first developed a graphene oxide (GO)-hybrid nanosurface-enhanced Raman scattering (SERS) array to detect dopamine (DA) in a selective and sensitive manner. Using the GO-hybrid nano-SERS array, we successfully measured a wide range of DA concentrations (10-4 to 10-9 M) rapidly and reliably. Moreover, the measurement of DA from differentiating neural stem cells applies to the characterization of neuronal differentiation. Given the challenges of in situ detection of neurotransmitters at the single-cell level, our developed SERS-based detection method can represent a unique tool for investigating single-cell signaling pathways associated with DA, or other neurotransmitters, and their roles in neurological processes.The development of a novel selective synthesis of 3-amino-2H-indazoles from readily available 2-halobenzonitriles is presented. The reaction proceeds through a domino reaction sequence, consisting of a regioselective palladium-catalyzed coupling of monosubstituted hydrazines with 2-halobenzonitriles, followed by an intramolecular hydroamination through a 5-exo-dig cyclization and subsequent isomerization to directly afford a wide variety of substituted 2H-indazole analogues in good to excellent yields.Zinagrandinolide E (1, ZGE) is an elemanolide with antinociceptive action isolated from Zinnia grandiflora (Asteraceae), valued in North México and southwestern United States for pain relief. Herein, we report the anti-inflammatory and antiallodynic action of ZGE (1) in carrageenan-induced inflammation and tactile allodynia in mice and in a neuropathic pain model in hyperglycemic mice. Local peripheral administration of ZGE (1-30 μg/paw) induced dose-dependent acute anti-inflammatory and antiallodynic effects. https://www.selleckchem.com/products/DMXAA(ASA404).html The anti-inflammatory effect was comparable to diclofenac (30 μg/paw). Intrathecal (i.t.) administration of ZGE (30 μg) in acute experiments did not affect carrageenan-induced inflammation but significantly reduced tactile allodynia in a dose-dependent fashion. In long-term experiments (15 or 6 days), using two different scheme treatments (pretreatment or post-treatment), ZGE (3-30 μg/paw) showed antiallodynic but not anti-inflammatory action. Local peripheral (3-30 μg/paw) or intrathecal (3-30 μg) administration of ZGE partially reversed tactile allodynia in hyperglycemic mice, better or comparable, respectively, with those of pregabalin (30 μg/paw or 30 μg i.t.). The effects were dose-dependent. According to the pharmacological tools employed, the anti-inflammatory and antiallodynic activities of ZGE are multitarget; these involve the opioidergic, serotoninergic, and GABAergic systems, as well as the NO-cGMP-ATP-sensitive K+ channel signaling pathway.We investigate the dynamic adsorption of anionic surfactant C14 - 16 alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed. It is found that the surfactant breakthrough in the neutral-wet core is delayed more compared to that in the water-wet core because the deposited crude oil components on the rock surface increase the surfactant adsorption via hydrophobic interactions. As the surfactant adsorption is satisfied, the crude oil components are solubilized by surfactant micelles and some of the adsorbed surfactants are released from the rock surface. The released surfactant dissolves in the flowing surfactant solution, thereby resulting in an overshoot of the produced surfactant concentration with respect to the injection value. Furthermore, under water-wet conditions, changing the surface redox potential from an oxidized to a reduced state decreases the surfactant adsorption level by 40%. We find that the decrease in surfactant adsorption is caused not only by removing the iron oxide but also by changing the calcium concentration after the core restoration process (calcite dissolution and ion exchange as a result of using EDTA). Findings from this study suggest that laboratory surfactant adsorption tests need to be conducted by considering the wettability and redox state of the rock surface while recognizing how core restoration methods could significantly alter the ionic composition during surfactant flooding.We investigate the effect of functionalization by acid/amine combinations of four aromatic capping ligands on the optoelectronic properties of CH3NH3PbBr3 perovskite quantum dots (PQDs). These include benzoic acid (BA), phenylacetic acid (PAA), benzylamine, and isopropyl benzylamine. We observe that charge transfer efficiency in PQD films comprising BA-ligated samples varies between 12% and 95% as the dot density is tuned from 102 to 105 dots/μm2 but is consistently ∼92% over that entire range for PAA-ligated PQDs. As temperature T decreases, initially, recombination is dominated by bound or trapped excitons, but below 80 K, spectral broadening, accompanied by free excitonic behavior, is observed. Our results indicate enhanced charge delocalization at lower values of T, which reduces the level of exciton confinement and recombination decay rates and underlines the importance of investigating PQD-ligand interactions at a fundamental level given the significant effect minute changes in ligand structures have on the optoelectronic properties of quantum dots.Sulfoximines have been largely disregarded in medicinal chemistry for a long time. However, recently, they have risen to the apparent level of stardom on the drug discovery scene. Considering the outstanding properties of sulfoximines, this versatile functional group has advanced to implementation in several drug discovery programs. Currently, this fashionable functional group can be found in various hit-to-lead and lead optimization studies in early stages and in several compounds currently in clinical trials. Herein, we review recent developments to demonstrate the scope and limitations of this interesting and versatile functional group in medicinal chemistry and drug discovery.