https://www.selleckchem.com/products/Ml-133-hcl.html Secondary forests emerging during traditional shifting cultivation practices are increasingly recognized for their fulfillment of ecosystem services and mitigation potential of climate change and biodiversity losses. The soil seed bank as a recruit reservoir is a limiting factor for natural forest regeneration of such secondary forests and is decisive for the formation and restitution of the post-disturbance community. The aim of this study was to compare the composition of the soil seed bank along a natural regeneration chronosequence from the Caxiuanã National Forest, eastern Amazon, including old-growth reference sites. We sampled standing vegetation, soil properties and soil seed banks and compared the density and species richness of different life forms among different regeneration stages. Using nonmetric, multiple scaling, we compared the composition of the soil seed bank among different regeneration stages and with standing vegetation composition. Furthermore, we outlined the influence of stand age, veystem services, resilience and stability of secondary forests arising during shifting cultivation practices.The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodig