Aerosol-assisted chemical vapor deposition (AACVD) can be used to produce coatings and thin films such as transparent conducting oxide (TCO) films, which are used in self-cleaning surfaces, solar cells, and other electronic and optoelectronic applications. A process based on AACVD consists of a number of steps aerosol generation, aerosol transport, aerosol delivery, and chemical deposition. Predicting the behavior of such a process at an industrial scale is challenging due to a number of factors the aerosol generation creates droplets of different sizes, losses are incurred in the transport, the delivery must evaporate the solvent to release the precursors, and the reactions on the surface of the deposition target may be complex. https://www.selleckchem.com/products/chir-98014.html This paper describes a full process model, including the prediction of the size distribution of the generated aerosol, the number and size of droplets delivered, the carrier gas temperature profile at the reaction site, the solvent evaporation time, and the rate of film formation. The key modeling challenges addressed include incorporating the impact of uncertainties in parameters such as heat and mass transfer coefficients and reaction rate constants. Preliminary simulations demonstrate a proof of concept for the use of simulation for gaining insights into the feasibility of a process scale-up for an industrial-scale AACVD. Copyright © 2020 American Chemical Society.Dry-bed adsorptive desulfurization of biomass-based syngas with a low- to medium sulfur content using ZnO was studied as an alternative to conventional wet-scrubbing processes for a small- to medium-scale biomass-to-liquid process concept. Following laboratory-scale long-term H2S breakthrough experiments in a previous study, desulfurization tests were scaled-up to bench-scale with actual bio-syngas to verify the lab-scale results under more realistic process conditions. A desulfurization unit was constructed and connected to a steam-blown atmospheric pilot-scale fluidized bed gasifier. Two successful 70+ h test campaigns were conducted with H2S removal below the breakthrough limit using full-sized ZnO adsorbent particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy elemental analysis, and Brunauer-Emmett-Teller (BET) surface area characterization of the fresh and spent adsorbent pellets were performed. SEM micrographs displayed the outward enlarging particle size in the sulfided layer. Characterization showed significant core-shell sulfidation behavior with a few hundred micron-thick sulfided layer leaving the majority of ZnO unutilized. Adsorbents lost most of their porosity in use, which was evident from BET surface area results. Simultaneous COS removal was found possible by the hydrolysis reaction to H2S. Furthermore, evidence of minor chlorine adsorption was found, thus highlighting the need for a dedicated HCl removal step upstream of desulfurization. Copyright © 2020 American Chemical Society.Dry-bed adsorptive desulfurization of biomass-based syngas with low to medium sulfur content using ZnO was investigated as an alternative to the conventional wet scrubbing processes. The technical feasibility of ZnO-based desulfurization was studied in laboratory-scale H2S breakthrough experiments. The experiments were set up to utilize realistic H2S concentrations from gasification and therefore long breakthrough times. Experiments were performed in a steam-rich model biosyngas in varying conditions. The long-term breakthrough experiments showed apparent ZnO utilization rates between 10 and 50% in the tested conditions, indicating intraparticle mass-transfer resistances partly due to space velocity and particle size constraints as well as the most likely product-layer resistances as evidenced by the large spent adsorbent surface area decrease. An empirical deactivation model to estimate full breakthrough curves was fitted to the laboratory-scale experimental data. Breakthrough experiment in tar-rich syngas was also performed with the conclusion that ZnO performance is not significantly affected by hydrocarbons despite carbon deposition on the particle surfaces. Copyright © 2020 American Chemical Society.In India, SARS-CoV-2 virus-induced coronavirus disease 2019 (COVID-19) has already infected close to 5500 people, causing the death of 164. While these numbers are not comparable with values observed for the USA, Italy, or Spain, given the population of India, and the fact that the pandemic is now in an exponential stage of growth, the risks of a contagion that affects a large sector of the Indian population are real. There are no current effective strategies to prevent the spread, other than minimizing contact through social distancing, while no fully effective drugs to prevent or treat COVID-19 exist, although several candidate drugs and repurposed antiviral and immune-modulating pharmacotherapies are being tested or in compassionate use. One postexposure prophylaxis, convalescent (immune) plasma (CP), has shown some success in China and previously in the cure and therapy of other coronaviruses, SARS-1 and Middle East respiratory syndrome. Drawn from current patients who are infected with COVID-19, its CP (human anti-SARS-CoV-2 plasma) might be one way to modulate the infectivity of this virus or its effects postinfection. © 2020 Director General, Armed Forces Medical Services. Published by Elsevier, a division of RELX India Pvt. Ltd.Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy.