We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addition to the bulk-dominated London response, we identify a T^3 power-law-in-temperature contribution from the surface, valid in the low-temperature limit. Our system is fully gapped in the bulk, and should be compared to bulk nodal superconductivity, which also exhibits power-law behavior. Power-law temperature dependence of the penetration depth can be one indicator of topological superconductivity.The toughening of sparse elastic networks, such as hydrogels, foams, or meshes against fracture is one of the most important problems in materials science. However, the principles of toughening have not yet been established despite urgent engineering requirements and several efforts made by materials scientists. Here we address the above-mentioned problem by focusing on the topology of a network. We perform fracture experiments for two-dimensional periodic lattices fabricated from rubber strings and connecters with well-defined topological structures. We find that systematic increase in the largest coordination number while maintaining the average coordination number (=4) as constant leads to significant improvement in toughness. We reproduce the observed toughening behavior through numerical simulations and confirm that the stress concentration in the vicinity of a crack tip can be controlled by the topology of the network. This provides a new strategy for creating tough sparse elastic networks, especially hydrogels.With high spatial resolution, polarimetric imaging of a supermassive black hole, like M87^⋆ or Sgr A^⋆, by the Event Horizon Telescope can be used to probe the existence of ultralight bosonic particles, such as axions. Such particles can accumulate around a rotating black hole through the superradiance mechanism, forming an axion cloud. When linearly polarized photons are emitted from an accretion disk near the horizon, their position angles oscillate due to the birefringent effect when traveling through the axion background. In particular, the observations of supermassive black holes M87^⋆ (Sgr A^⋆) can probe the dimensionless axion-photon coupling c=2πg_aγf_a for axions with mass around O(10^-20)  eV [O(10^-17)  eV] and decay constant f_a less then O(10^16)  GeV, which is complimentary to other axion measurements.Evidence for the presence of extra fields during inflation may be found in the anisotropies of the scalar and tensor spectra across a vast range of scales. Indeed, beyond the single-field slow-roll paradigm, a long tensor mode modulating the power spectrum can induce a sizable quadrupolar anisotropy. We investigate how these dynamics play out for the tensor two-point correlator. The resulting quadrupole stores information on squeezed tensor non-Gaussianities, including those sourced by extra field content and responsible for the breaking of so-called consistency relations. We underscore the potential of anisotropies as a probe of new physics testable at cosmic microwave background scales through the detection of B modes, they are accessible at smaller scales via pulsar timing arrays and interferometers. Our findings are particularly relevant in that recent studies show a considerable suppression for tensor non-Gaussianities if all modes are well inside the horizon. Quadrupolar anisotropies instead probe an unsuppressed ultrasqueezed bispectrum where the long mode can be horizon size.The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N=Z) nuclide _44^88Ru_44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in ^88Ru were populated via the ^54Fe(^36Ar,2nγ)^88Ru^* fusion-evaporation reaction at the Grand Accélérateur National d'Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to ^88Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N>Z nuclides. The direct observation of such a "delayed" rotational alignment in a deformed N=Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.Antiparallel spins are superior in orienteering to parallel spins. This intriguing phenomenon is tied to entanglement associated with quantum measurements rather than quantum states. Using photonic systems, we experimentally realize the optimal orienteering protocols based on parallel spins and antiparallel spins, respectively. The optimal entangling measurements for decoding the direction information from parallel spins and antiparallel spins are realized using photonic quantum walks, which is a useful idea that is of wide interest in quantum information processing and foundational studies. Our experiments clearly demonstrate the advantage of antiparallel spins over parallel spins in orienteering. https://www.selleckchem.com/products/ew-7197.html In addition, entangling measurements can extract more information than local measurements even if no entanglement is present in the quantum states.The effect of compression on the magnetic ground state of Sr_2IrO_4 is studied with x-ray resonant techniques in the diamond anvil cell. The weak interlayer exchange coupling between square-planar 2D IrO_2 layers is readily modified upon compression, with a crossover between magnetic structures around 7 GPa mimicking the effect of an applied magnetic field at ambient pressure. Higher pressures drive an order-disorder magnetic phase transition with no magnetic order detected above 17-20 GPa. The persistence of strong exchange interactions between J_eff=1/2 magnetic moments within the insulating IrO_2 layers up to at least 35 GPa points to a highly frustrated magnetic state in compressed Sr_2IrO_4, opening the door for realization of novel quantum paramagnetic phases driven by extended 5d orbitals with entangled spin and orbital degrees of freedom.