gallinarum-specific HgI2-R, H. beramporia-specific HbI2-R5, and H. indica-specific HiI2-R. The multiplex PCR amplified 396-bp, 272-bp, and 482-bp fragments specific to H. gallinarum, H. beramporia, and H. indica DNA, respectively, and did not amplify the fragments using other chicken nematode DNAs such as Ascaridia galli, Oxyspirura mansoni, Dispharynx nasuta, and Cheilospirura hamulosa. These results suggest that the multiplex PCR would serve as a useful tool for identifying and diagnosing infections of H. gallinarum, H. beramporia, and H. indica in poultry.The acoustic radiation force resulting from acoustic waves have been extensively studied for the contact-free generation of organized patterning arrays. The precise arrangement of microscopic objects clustered at the pressure nodes is critical to the development of functional structures and patterned surfaces. However, the size of the clusters is restricted by the saturation limit of the acoustic nodes. Here, we present a bulk acoustic wave (BAW) platform, which employs a two-dimensional acoustic wave to propel particles of various sizes. Experimentally, when particles are large, significant acoustic energy is scattered and partly absorbed by the matched layers in front of the sensors. The acoustic radiation force from a convergent acoustic pressure field agglomerates the large polystyrene (PS) particles towards the central region instead of the pressure nodes. The parametric analysis has been performed to assess the transition in the particles from clustering at the organized nodal arrays to agglomerating in the central region, which is a function of particle size, particle concentration, and load voltage. Statistically, the particles can agglomerate with a cluster ratio greater than 70%, and this ratio can be improved by increasing the load power/voltage supplied to the transducers. With its ability to perform biocompatible, label-free, and contact-free self-assembly, this concept offers a new possibility in the fabrication of colloidal layers, the recreation of tissue microstructure, the development of organoid spheroid cultures, the migration of microorganisms, and the assembly of bioprinting materials.Rubin's face-vase illusion demonstrates how one can switch back and forth between two different interpretations depending on how the figure outlines are assigned. In the primate visual system, assigning ownership along figure borders is encoded by neurons called the border ownership (BO) cells. Studies show that the responses of these neurons not only depend on the local features within their receptive fields, but also on contextual information. Despite two decades of studies on BO neurons, the ownership assignment mechanism in the brain is still unknown. Here, we propose a hierarchical recurrent model grounded on the hypothesis that neurons in the dorsal stream provide the context required for ownership assignment. Our proposed model incorporates early recurrence from the dorsal pathway as well as lateral modulations within the ventral stream. While dorsal modulations initiate the response difference to figure on either side of the border, lateral modulations enhance the difference. We found responses of our dorsally-modulated BO cells, similar to their biological counterparts, are invariant to size, position and solid/outlined figures. Moreover, our model BO cells exhibit comparable levels of reliability in the ownership signal to biological BO neurons. We found dorsal modulations result in high levels of accuracy and robustness for BO assignments in complex scenes compared to previous models based on ventral feedback. Finally, our experiments with illusory contours suggest that BO encoding could explain the perception of such contours in higher processing stages in the brain.Hydrogels are hydrophilic polymer networks that swell upon submersion in water. Thanks to their bio-compatibility, compliance, and ability to undergo large deformations, hydrogels can be used in a wide variety of applications such as in situ sensors for measuring cell-generated forces and drug delivery vehicles. https://www.selleckchem.com/products/l-arginine-l-glutamate.html In this work we investigate the equilibrium mechanical responses that can be achieved with hydrogel-based shells filled with a liquid core. Two types of gel shell geometries are considered - a cylinder and a spherical shell. Each shell is filled with either water or oil and subjected to compressive loading. We illustrate the influence of the shell geometry and the core composition on the mechanical response of the structure. We find that all core-shell structures stiffen under increasing compressive loading due to the load-induced expulsion of water molecules from the hydrogel shell. Furthermore, we show that cylindrical core-shell configurations are stiffer then their spherical equivalents. Interestingly, we demonstrate that the compression of a core-shell structure with an aqueous core leads to the transportation of water molecules from the core into the hydrogel. These results will guide the design of novel core-shell structures with tunable properties and mechanical responses.Phuket is a popular tourism destination in Thailand. This study examined the distribution of microplastics found on beaches along the East and West coasts of Phuket including Tri Trang, Patong, Kalim, Chalong, Makham, and Rawai beaches. A total of 18 samples from a 0.5 m × 0.5 m quadrat at the intertidal zone were sorted into >300-μm and 20-300-μm size classes. For all sizes combined, the mean abundance was 188.3 ± 34.5 items kg-1. White (29.2%) and fiber (85.6%) were the most abundant plastic; and the polymer types based on μFTIR analysis were PET > PS > PP > PU > PVC > Epoxy with a great amount of cotton and regenerated cellulose also detected. Principal component analysis indicated the correlation between PET, regenerated cellulose, PP and PU with Chalong and Patong beaches, suggesting that highly visited tourist beaches with harbor activities, and a tourist departure point, are possible sources of microplastics.One of the most landed sharks in Portuguese fisheries is the lesser-spotted dogfish (Scyliorhinus canicula), which is ever-present in Portuguese fish markets and consumed as cheap fish protein source. The focus of this study was to evaluate element contamination in consumed tissues of Atlantic S. canicula, with the intent of safeguarding possible public health issues. A total of 74 specimens were analysed for metals and metalloids in the deeper white muscle and skin. Arsenic, zinc, iron and aluminium were the elements with higher mean values. There was a tendency for higher levels in the skin, with differences between life-stage and gender. Many individuals surpassed stipulated guideline limits for mercury and arsenic, posing a risk for human consumption (according to the health risk assessment performed for the average Portuguese fish consumption) or even for use in feed production. Besides the public health concern, this study also evidences troubling signs on marine contamination status.