Besides national and international recommendations, orthopaedic departments face significant changes in daily activity and serious issues to maintain their standards in musculoskeletal care during the pandemic Covid-19 crisis that we are facing. This report retrospectively addresses measures that were progressively put in place to modify in a week time the activity of a busy orthopaedic department in a large tertiary university hospital in face of the pandemic. Surgical priorities and surgical outcomes are key aspects to consider. The experience may offer some insight to areas where the spread of the disease may be slower or delayed. Abrupt stop of scheduled surgery and clinics is useful to adapt an orthopaedic department to the overall hospital resource reorganization. Orthopaedic surgeons need to be aware of the risks to patients and personnel in view of underdiagnosed cases, which make pre-operative Covid-19 evaluation mandatory for all surgical cases. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author(s) 2020.Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity. © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company.Pritelivir (AIC316, BAY 57-1293) was discovered as a highly potent drug against herpes simplex viruses with a novel mode of action, i.e. inhibition of the viral helicase-primase. A side by side comparison of the oral form against Valtrex™ in patients with genital herpes, showed superiority in phase II testing for Pritelivir. A number of different solid forms have been generated for additional, e.g. systemic, or topical applications. This journal is © The Royal Society of Chemistry 2019.Pharmaceutical heparin's activity arises from a key high affinity and high selectivity antithrombin binding motif, which forms the basis for its use as an anticoagulant. The current problems with the supply of pig heparin raises the emphasis of understanding heparin biosynthesis so as to control and advance recombinantly expressed agent that could bypass the need for animals. Unfortunately, much remains to be understood about the generation of the antithrombin-binding motif by the key enzyme involved in its biosynthesis, 3-O-sulfotransferase-1 (3OST-1). In this work, we present a novel computational approach to understand recognition of oligosaccharide sequences by 3OST-1. Application of combinatorial virtual library screening (CVLS) algorithm on hundreds of tetrasaccharide and hexasaccharide sequences shows that 3OST-1 belongs to the growing number of proteins that recognize glycosaminoglycans with very high selectivity. It prefers very well defined pentasaccharide sequences carrying distinct groups in each of the five residues to generate the antithrombin binding motif. CVLS also identifies key residues including His271, Arg72, Arg197 and Lys173, which interact with 6-sulfate, 5-COO¯, 2-/6-sulfates and 2-sulfate at the -2, -1, +2, and +1 positions of the precursor pentasaccharide, respectively. Additionally, uncharged residues, especially Gln163 and Asn167, were also identified as playing important roles in recognition. https://www.selleckchem.com/products/Beta-Sitosterol.html Overall, the success of CVLS in predicting 3OST-1 recognition characteristics that help engineer selectivity lead to the expectation that recombinant enzymes could be designed to help resolve the current problems in the supply of anticoagulant heparin. © 2020 The Authors.Haloalkane dehalogenases are enzymes that catalyze the cleavage of carbon-halogen bonds in halogenated compounds. They serve as model enzymes for studying structure-function relationships of >100.000 members of the α/β-hydrolase superfamily. Detailed kinetic analysis of their reaction is crucial for understanding the reaction mechanism and developing novel concepts in protein engineering. Fluorescent substrates, which change their fluorescence properties during a catalytic cycle, may serve as attractive molecular probes for studying the mechanism of enzyme catalysis. In this work, we present the development of the first fluorescent substrates for this enzyme family based on coumarin and BODIPY chromophores. Steady-state and pre-steady-state kinetics with two of the most active haloalkane dehalogenases, DmmA and LinB, revealed that both fluorescent substrates provided specificity constant two orders of magnitude higher (0.14-12.6 μM-1 s-1) than previously reported representative substrates for the haloalkane dehalogenase family (0.