Angiogenic factor with G-patch and FHA domains 1 (AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogenesis, but the biological significance and underlying mechanism of this nucleocytoplasmic transport remains unknown. Here, we demonstrate that the dynamic distribution is essential for AGGF1 to execute its angiogenic function. To search the structural bases for this nucleocytoplasmic transport, we characterized three potential nuclear localization regions, one potential nuclear export region, forkhead-associated (FHA), and G-patch domains to determine their effects on nucleocytoplasmic transport and angiogenesis, and we show that AGGF1 remains intact during the dynamic subcellular distribution and the region from 260 to 288 amino acids acts as a signal for its nuclear localization. The distribution of AGGF1 in cytoplasm needs both FHA domain and 14-3-3α/β. Binding of AGGF1 via FHA domain to 14-3-3α/β is required to complete the transport. Thus, we for the first time established structural bases for the nucleocytoplasmic transport of AGGF1 and revealed that the FHA domain of AGGF1 is essential for its nucleocytoplasmic transport and angiogenesis.This study aimed to observe the effects of high temperature on different restorative dental materials by detecting changes in their microstructural and elemental composition. Disk shaped samples (10 mm diameter, 2 mm depth) were prepared from 8 dental materials (compomer, glass carbomer, ormocer, giomer, zinc reinforced glass ionomer (GI), silver-alloy reinforced GI, zirconia reinforced GI, and conventional GI). Scanning electron microscopy/Energy dispersive X-ray spectroscopy (SEM/EDS) was used to characterize sample surface structures and elemental composition. The same samples were also analyzed using X-ray fluorescence (XRF) to determine the trace element content. Each sample was placed in a porcelain furnace and exposed to 900 °C for 30 min. Observations of macroscopic changes in samples after exposure high temperature were recorded. The microstructural changes in sample surfaces after incineration were detected by SEM. The elemental compositions obtained before and after the incineration were compared after repeating the XRF and EDS analyses. Dental materials demonstrated specific macroscopic changes and microstructural deteriorations detected by SEM images after exposure to high temperature. While several changes occurred in the elemental content of materials in terms of amount, the original elemental composition was preserved. The ability to distinguish dental materials by elemental analyses has had an important impact on the identification process.Stenotrophomonas maltophilia (hereinafter referred to as S. maltophilia) has developed into an important opportunistic pathogenic bacterium, which is prevalent in nosocomial and community infections, and has adverse effects on patients with a compromised immune system. Phage vB_SmaS_BUCT548 was isolated from sewage of Beijing 307 Hospital with S. maltophilia (strain No.824) as a host. Phage morphology was observed by transmission electron microscopy and its biological and genomic characteristics were determined. The electron microscope shows that the bacteriophage belonged to the Siphoviridae and MOI is 0.001. One-step growth curve shows that the incubation period is 30 min and the burst size is 134 PFU/Cell. The host range is relatively wide and it can lysis 11of 13 S. maltophilia strains. Next-Generation Sequencing (NGS) results show that the genome sequence is a dsDNA with 62354 bp length, and the GC content is 56.3% (GenBank MN937349). One hundred and two online reading frames (ORFs) are obtained after RAST online annotation and the BlastN nucleic acid comparison shows that the phage had low homology with other phages in NCBI database. This study reports a novel S. maltophilia phage named vB_SmaS_BUCT548, which has a short incubation period, strong lytic ability, and a wide host range. The main characteristic of this bacteriophage is the novelty of the genomic sequence and the analysis of the other characteristics provides basic data for further exploring the interaction mechanism between the phage and the host.Amphibian populations are declining worldwide at alarming rates. Among the large variety of contributing stressors, chemical pollutants like pesticides have been identified as a major factor for this decline. Besides direct effects on aquatic and terrestrial amphibian stages, sublethal effects like impairments in reproduction can affect a population. Therefore, we investigated the reproductive capacity of common toads (Bufo bufo) in the pesticide-intensive viticultural landscape of Palatinate in Southwest Germany along a pesticide gradient. https://www.selleckchem.com/products/sulfopin.html In a semi-field study, we captured reproductively active common toad pairs of five breeding ponds with different pesticide contamination level and kept them in a net cage until spawning. Toads from more contaminated ponds showed an increased fecundity (more eggs) but decreased fertilization rates (fewer hatching tadpoles) as well as lower survival rates and reduced size in Gosner stage 25, suggesting that the higher exposed populations suffer from long-term reproductive impairments. In combination with acute toxicity effects, the detected sublethal effects, which are mostly not addressed in the ecological risk assessment of pesticides, pose a serious threat on amphibian populations in agricultural landscapes.Due to their widespread therapeutic and agricultural applicability and usefulness in removing metals and metalloids from water, cobalt ferrite nanoparticles (NPs) are currently receiving increasing attention from researchers. However, their potential phytotoxicity is still poorly understood. Thus, the aim of the current study was to assess the effects of synthesized cobalt ferrite (CoFe2O4) NPs on biological (morphological, physiological, and biochemical) parameters of edible plant garden-cress (Lepidium sativum L.), depending on particle size and concentrations. In this study, physical characteristics of cobalt ferrite NPs were determined. Increased total content of Co and Fe in L. sativum tissues and their transfer from roots to above-ground parts of seedlings, which depended on the size of NP (15  less then  5  less then  1.65 nm), indicated that plants had been exposed to Co ferrite NPs. The relative growth of roots, biomass of roots and above-ground parts of seedlings, amounts of chlorophylls a and b, carotenoids, and malondialdehyde (MDA) were determined.