Phytases added to feeds play a lesser role in the digestion of phytates compared to natural enzymes and complement their action. The concept of extra-phosphoric effect has no scientific justification, since phytases exhibit only the phosphohydrolase activity and are not able to catalyze other reactions.Methods of electrochemical analysis of biological objects based on the reaction of electro-oxidation/electro-reduction of molecules are presented. Polymer nanocomposite materials that modify electrodes to increase sensitivity of electrochemical events on the surface of electrodes are described. Examples of applications electrochemical biosensors constructed with nanocomposite material for detection of biological molecules are presented, advantages and drawbacks of different applications are discussed.The review describes the CRISPR/CAS system and its adaptation for the genome editing in filamentous fungi commonly used for production of enzyme complexes, enzymes, secondary metabolites, and other compounds used in industrial biotechnology and agriculture. In the second part of this review, examples of the CRISPR/CAS technology application for improving properties of the industrial strains of fungi from the Trichoderma, Aspergillus, Penicillium, and other genera are presented. Particular attention is given to the efficiency of genome editing, as well as system optimization for specific industrial producers.Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host-pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.Inorganic polyphosphates (polyP) are the linear polymers of orthophosphoric acid varying in the number of phosphate residues linked by the energy-rich phosphoanhydride bonds. PolyP is an essential component in living cells. Knowledge of polyP metabolizing enzymes in eukaryotes is necessary for understanding molecular mechanisms of polyP metabolism in humans and development of new approaches for treating bone and cardiovascular diseases associated with impaired mineral phosphorus metabolism. Yeast cells represent a rational experimental model for this research due to availability of the methods for studying phosphorus metabolism and construction of knockout mutants and strains overexpressing target proteins. Multicomponent system of polyP metabolism in Saccharomyces cerevisiae cells is presented in this review discussing properties, functioning, and practical significance of the enzymes involved in the synthesis and degradation of this important metabolite.Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.Although TRPV1 ion channel has been attracting researchers' attention for many years, its functions in animal organisms, the principles of regulation, and the involvement in pathological processes have not yet been fully clarified. Mutagenesis experiments and structural studies have identified the structural features of the channel and binding sites for its numerous ligands; however, these studies are far from conclusion. This review summarizes recent achievements in the TRPV1 research with special focus on structural and functional studies of the channel and on its ligands, which are extremely diverse in their nature and interaction specificity to TRPV1. Particular attention was given to the effects of numerous endogenous agonists and antagonists that can fine-tune the channel sensitivity to its usual activators, such as capsaicin, heat, acids, or their combination. In addition to the pain sensing not covered in this review, the TRPV1 channel was found to be involved in the regulation of many important physiological and pathological processes and, therefore, can be considered as a promising therapeutic target in the treatment of various diseases, such as pneumonia, ischemia, diabetes, epilepsy, schizophrenia, psoriasis, etc.Members of the Lsm protein family are found in all three domains of life bacteria, archaea, and eukarya. They are involved in numerous processes associated with RNA processing and gene expression regulation. A common structural feature of all Lsm family proteins is the presence of the Sm fold consisting of a five-stranded β-sheet and an α-helix at the N-terminus. Heteroheptameric eukaryotic Sm and Lsm proteins participate in the formation of spliceosomes and mRNA decapping. https://www.selleckchem.com/products/gsk2830371.html Homohexameric bacterial Lsm protein, Hfq, is involved in the regulation of transcription of different mRNAs by facilitating their interactions with small regulatory RNAs. Furthermore, recently obtained data indicate a new role of Hfq as a ribosome biogenesis factor, as it mediates formation of the productive structure of the 17S rRNA 3'- and 5'-sequences, facilitating their further processing by RNases. Lsm archaeal proteins (SmAPs) form homoheptamers and likely interact with single-stranded uridine-rich RNA elements, although the role of these proteins in archaea is still poorly understood.