https://www.selleckchem.com/products/procyanidin-c1.html Overall, the improvement of the CORE strategy and functioning results in increased scientific success rates for the institution, while reducing psychosocial risks for personnel.Policy makers need decision tools to determine when to use physical distancing interventions to maximize the control of COVID-19 while minimizing the economic and social costs of these interventions. We describe a pragmatic decision tool to characterize adaptive policies that combine real-time surveillance data with clear decision rules to guide when to trigger, continue, or stop physical distancing interventions during the current pandemic. In model-based experiments, we find that adaptive policies characterized by our proposed approach prevent more deaths and require a shorter overall duration of physical distancing than alternative physical distancing policies. Our proposed approach can readily be extended to more complex models and interventions.Current guidelines in traumatic brain injury (TBI) recommend a cerebral perfusion pressure (CPP) within the fixed interval of 60-70 mm Hg. However, the autoregulatory, optimal CPP target (CPPopt) might yield better cerebral blood flow (CBF) regulation. In this study, we investigated fixed versus autoregulatory CPP targets in relation to cerebral energy metabolism and clinical outcome after TBI. Ninety-eight non-craniectomized patients with severe TBI treated in the neurointensive care unit, Uppsala University Hospital, Sweden, 2008-2018, were included. Data from cerebral microdialysis (MD), intracranial pressure (ICP), pressure autoregulation, CPP and CPPopt55-15 (a variant of CPPopt based on filtered slow waves from 15-55 sec range) were analyzed the first 10 days. The good monitoring time (GMT %) below/within/above the fixed and autoregulatory CPP targets were calculated. CPPopt55-15 was >70 mm Hg 74% of the time the first 10 days. Higher GMT (%) ΔCPPopt55-15 ± 10 mm Hg correlated with low