https://www.selleckchem.com/products/rcm-1.html The V4+/V3+ (3.4 V) redox couple has been well-documented in cathode material Na3V2(PO4)3 for sodium-ion batteries. Recently, partial cation substitution at the vanadium site of Na3V2(PO4)3 has been actively explored to access the V5+/V4+ redox couple to achieve high energy density. However, the V5+/V4+ redox couple in partially substituted Na3V2(PO4)3 has a voltage far below its theoretical voltage in Na3V2(PO4)3, and the access of the V5+/V4+ redox reaction is very limited. In this work, we compare the extraction/insertion behavior of sodium ions from/into two isostructural compounds of Na3VGa(PO4)3 and Na3VAl(PO4)3, found that, by DFT calculations, the lower potential of the V5+/V4+ redox couple in Na3VM(PO4)3 (M = Ga or Al) than that in Na3V2(PO4)3 is because of the extraction/insertion of sodium ions through the V5+/V4+ redox reaction at different crystallographic sites, that is, sodium ions extracting from the Na(2) site in Na3VM(PO4)3 while from the Na(1) site in Na3V2(PO4)3, and further evidenced that the full access of the V5+/V4+ redox reaction is restrained by the excessive diffusion activation energy in Na3VM(PO4)3.Li2CO3 is a ubiquitous byproduct in Li-air (O2) batteries, and its accumulation on the cathode could be detrimental to the devices. As a result, much efforts have been devoted to investigating its formation and decomposition, in particular, upon cycling of Li-O2 batteries. At high voltages, Li2CO3 is expected to decompose into CO2 and O2. However, as recognized from the work of many authors, only CO2, and no O2, has been identified, and the underlying mechanism remains uncertain so far. Herein, a solid-state Li-O2 battery (Li|Li6.4La3Zr1.4Ta0.6O12|Au) has been designed to interrogate the Li2CO3 oxidation without interferences from the decomposition of other battery components (organic electrolyte, binder, and carbon cathode) widely applied in conventional Li-O2 batteries. It is revealed that Li2C