https://www.selleckchem.com/products/brequinar.html Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45h to heat stress (32-42°C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and intetment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death. The variability in patients' femoral and tibial anatomy requires to use different tibia component sizes with the same femoral component size. These size combinations are allowed by manufacturers, but the clinical impact remains unclear. Therefore, the goals of our study were to investigate whether combining different sizes has an impact on the kinematics for two well-established knee systems and to compare these systems' kinematics to the native kinematics. Six fresh frozen knee specimens were tested in a force controlled knee rig before and after implantation of a cruciate retaining (CR) and a posterior-stabilized (PS) implant. Femoro-tibial kinematics were recorded using a ultrasonic-based motion analysis system while performing