Hypercapnia (pCO  < 70 mmHg) was detected more likely and earlier by continuous tpCO monitoring compared to half-hourly pvCO measurements. Continuous tpCO monitoring is feasible and precise with good correlation to arterial and venous blood gas carbon-dioxide analysis during complex catheter ablations under conscious sedation and may contribute to additional safety. Continuous tpCO2 monitoring is feasible and precise with good correlation to arterial and venous blood gas carbon-dioxide analysis during complex catheter ablations under conscious sedation and may contribute to additional safety.Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore the gut microbiome and memory domains according to obesity status. A specific microbiome profile associated with short-term memory, working memory, and the volume of the hippocampus and frontal regions of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aromatic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight the potential therapeutic value of targeting the gut microbiota for memory impairment, specifically in subjects with obesity.Mitochondrial dysfunction is a hallmark of heart disease. Nicolás-Ávila et al. (2020) now find that cardiomyocytes eject dysfunctional mitochondria in exopher vesicles, which require elimination by specialized heart-resident macrophages, altogether supporting proper heart function.The exact principles guiding host-microbe homeostasis in the intestinal tract remain obscure. In a recent issue of Nature, Wu et al. (2020) describe that bacterial-derived inositols are an important principle that shapes regenerative properties of the colonic epithelium. The metabolites activate HDAC3, which represents an important part of the epigenetic machinery.Although a crucial role for mitochondrial metabolism in controlling T regulatory (Treg) cell function has been recognized, its contribution during autoimmunity has not yet been fully elucidated. In this issue of Cell Metabolism, Alissafi and colleagues demonstrate that during autoimmunity, Treg cell functional alterations associate with mitochondrial oxidative stress, dysfunctional mitophagy, and enhanced DNA damage response, culminating with their cell death.In this issue of the Cell Metabolism, Chevalier et al. show that a warm environment produces changes in the composition of intestinal microbiota and that these changes can prevent bone loss due to hypogonadism. Dovetailing with prior studies on the ability of probiotics to reverse hypogonadism-induced osteopenia, the findings reaffirm a central role for the microbiome in regulating bone mass in response to both environmental and hormonal cues.Epidemiological studies suggest that physical exercise or cognitive stimulation might contribute to lower the risk of developing dementia disorders such as Alzheimer's disease (AD). https://www.selleckchem.com/products/BIBF1120.html Here, we used the well-established enrichment environment (EE) paradigm to study the impact of prolonged physical activity and cognitive stimulation in a mouse model of AD overexpressing only Aβ4-42 peptides. These mice display age-dependent memory and motor deficits, in the absence of human amyloid precursor protein (APP) overexpression. We demonstrate that housing under EE conditions leads to an entire preservation of recognition and spatial memory, as well as a rescue of motor deficits in this mouse model. Moreover, we find that Tg4-42hom mice present a typical floating phenotype in the Morris water maze task that could be completely ameliorated upon long-term EE housing. Our findings are in line with epidemiological studies suggesting that physical activity and cognitive stimulation might represent efficient strategies to prevent age-related neurodegenerative disorders such as AD.