https://www.selleckchem.com/products/msab.html Encapsulation technique was applied to improve the stability of bioactive compounds in bran extracts from Thai rice cultivars (Khao Dawk Mali 105, Kiaw Ngu, Hom Nil, and Leum Pua), using three carriers including gelatin, gum Arabic, and the mixture of gelatin and gum Arabic. The microcapsules obtained using gelatin provided a higher production yield of 76.08, 85.63, 85.63 and 85.59%, respectively. A greater encapsulation efficiency was also observed in the extracts encapsulated with gelatin (93.45, 95.91, 91.19 and 95.09%, respectively). After simulated gastric and intestinal digestion, the microcapsules formed by using gelatin exhibited the higher release of bioactive compounds and antioxidant activity than unencapsulated extracts. However, the extracts encapsulated using gelatin and gum Arabic complex yielded the lowest release of bioactive compounds and their antioxidant activity after simulated digestion. The overall results showed that gelatin was an appropriate carrier that could protect bioactive compounds from the digestion conditions.Triple quadrupole mass spectrometry has been the main technique for HAAs analysis in recent decade, while it requires extensive optimization of compound-dependent parameters. A novel method based on HPLC-Q-Orbitrap-HRMS was developed firstly for simultaneous determination of eighteen HAAs. Extraction and purification conditions were optimized and the developed method was validated in terms of linearity, accuracy and precision. Results indicated eighteen HAAs and two internal standards could be separated in 12 min using a gradient elution program. The full MS/dd-MS2 scan was adopted for analysis, which indicated favorable recoveries (71.3-114.8%) along with LODs and LOQs in the ranges of 0.02-0.6 and 0.05-2.0 μg/kg, respectively. Internal standards used for calibration could effectively reduce quantification errors produced by matrix effects. The validated method was successfully ap