https://www.selleckchem.com/products/gw806742x.html The chemical properties of actinide materials are often predefined and described based on the data available for isostructural species. This is the case for potassium plutonyl (PuVI) carbonate, K4PuVIO2(CO3)3(cr), a complex relevant for nuclear technology and the environment, of which the crystallographic and thermodynamic properties of which are still lacking. We report here the synthesis and characterization of PuVI achieved by single-crystal X-ray diffraction analysis and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure at the Pu M4-edge coupled with electronic structure calculations. The crystallographic properties of PuVI are compared with isostructural uranium (U) and neptunium (Np) compounds. Actinyl (AnVI) axial bond lengths, [O-AnVI-O]2+, are correlated between solid, K4AnVIO2(CO3)3(cr), and aqueous, [AnVIO2(CO3)3]4-(aq) species for the UVI-NpVI-PuVI series. The spectroscopic data are compared to KPuVO2CO3(cr) and PuIVO2(cr) to tackle the trend in the electronic structure of PuVI regarding the oxidation state changes and local structural modifications around the Pu atom.An unusual chemoselective 1,1-addition of α-C2-bridged biphospholes to terminal alkynes is reported. The developed protocol provides simple access to the unknown 1,3-diphosphepines, which has potential applications in the coordination and catalyst chemistry. Their Pd and Mo complexes were studied by single-crystal X-ray diffraction analysis. This method features excellent chemoselectivity, high step and atom economy, mild reaction conditions, and wide substrate scope.Here we present plasmon-resonant vibrational sum frequency generation spectroscopy for use in electrochemical measurements. Using surface plasmon resonance we couple light through a CaF2 prism to Au films of >50 nm in order to reach the buried Au/electrolyte interface. The approach enables us to use bulk electrolyte, and high current densities (