https://www.selleckchem.com/products/limertinib.html Nowadays, multiplex analysis is very popular, since it allows to detect a large number of biomarkers simultaneously. Traditional multiplex analysis is usually based on changes of photoluminescence (PL) intensity and/or PL band spectral positions in the presence of analytes. Using PL lifetime as an additional parameter might increase the efficiency of multiplex methods. Quantum dots (QDs) can be used as luminescent markers for multiplex analysis. Ternary in-based QDs are a great alternative to the traditional Cd-based one. Ternary QDs possess all advantages of traditional QDs, including tunable photoluminescence in visible range. At the same time ternary QDs do not have Cd-toxicity, and moreover they possess long spectral dependent lifetimes. This allows the use of ternary QDs as a donor for time-resolved multiplex sensing based on Förster resonance energy transfer (FRET). In the present work, we implemented FRET from AgInS2/ZnS ternary QDs to cyanine dyes absorbing in different spectral regions of QD luminescence with different lifetimes. As the result, FRET-induced luminescence of dyes differed not only in wavelengths but also in lifetimes of luminescence, which can be used for time-resolved multiplex analysis in biology and medicine.This paper investigates the detection of the transmitted power violation (TPV) in the satellite-terrestrial integrated network, where the terrestrial base station may break the spectrum policies so that severe damages are made to the satellite systems. Due to the lack of prior information on specific abnormal behaviors, this problem is complex and challenging. To tackle it, we first turn to the geolocation spectrum database based detecting framework, where not only the tasks of each segment but also the spectrum policies are specified. Then, the ternary hypothesis test and the generalized Neyman-Pearson (GMNP) test criterion are applied to maximize the detection probability under the