https://www.selleckchem.com/products/ab680.html After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.BACKGROUND Mesenchymal stem cells (MSCs) have been reported to promote the regeneration of injured tissue via their paracrine abilities, which are enhanced by hypoxic preconditioning. In this study, we examined the therapeutic efficacy of hypoxia-preconditioned MSCs on renal fibrosis and inflammation in rats with ischemia-reperfusion injury (IRI). METHODS MSCs derived from rats and humans were incubated in 1% O2 conditions (1%O2 MSCs) for 24 h. After IRI, 1%O2 MSCs or MSCs cultured under normoxic conditions (21%O2 MSCs) were injected through the abdominal aorta. At 7 or 21 days post-injection, the rats were sacrificed and their kidneys were analyzed. In in vitro experiments, we examined whether 1%O2 MSCs enhanced the ability to produce anti-fibrotic humoral factors using transforming growth factor (TGF)-β1-stimulated HK-2 cells incubated with conditioned medium from MSCs. RESULTS Administration of rat 1%O2 MSCs (1%O2 rMSCs) attenuated renal fibrosis and inflammation more significantly than rat 21%O2 MSCs. Notably, human 1%O2 MSCs (1%O2 hMSCs) also attenuated renal fibrosis to the same extent as 1%O2 rMSCs. Flow cytometry showed that 1%O2 hMSCs did not change human leukocyte antigen expression. Further in vitro experiments revealed that conditioned medium from 1%O2 MSCs further suppressed TGF-β1-induced fibrotic changes in HK-2 cells compared with 21%O2 MSCs. Hypoxic preconditioning enhanced vascular endothelial growth factor (VEGF) and hepatocy