In the wake of the control of light at the sub-wavelength scale by nanoresonators, metasurfaces allowing strong field exaltations are an attractive platform to enhance nonlinear processes. Recently, high efficiency second harmonic and difference frequency generations were demonstrated in metasurfaces that generate a nonlinear polarization normal to the surface. Here, we introduce a mode matched resonator that is able to produce this particular nonlinear polarization in a layer of gallium arsenide associated with a gold metasurface. The nonlinear conversion mechanism is described as a two-step process in which efficiency is shown to yield a good colocalization and a strong enhancement of the pump fields, as well as a high extraction efficiency of the generated field. This mode-matched metasurface is able to reach a difference frequency generation (DFG) efficiency of 10-2W/W2. This opens a new paradigm where alternative nonlinear materials could be reintroduced in metasurfaces and yields even higher efficiency than high effective χ(2) structures.In a global climate change environment, assuring optimal growing conditions is a difficult challenge, compromising the food supply for a rapidly rising population. The climatic conditions in the protected environment lead to high temperatures and fast insect development, impacting productivity and vegetables qualitative attributes. https://www.selleckchem.com/ Consumers' interest in healthy food requires sustainable tools to manage biotic and abiotic factors and, from this perspective, anti-insect nets represent an excellent "green" solution. For this purpose, our goal was to compare two different anti-insect nets on microclimate, production, and qualitative traits of Cucurbita pepo L. fresh fruits. The experiment was conducted in three separate polyethylene high tunnels, with 50 mesh anti-insect nets of different porosities being installed on the openings of two tunnels, while the third tunnel was a control without nets. Microclimate measurements, as well as yield, physiological, and phytochemicals variables, were assessed. The 50 mesh net led to a decrease in marketable yield (22.5%), fruit number (18.0%), CO2 net assimilation rate (6.0%), and transpiration rate (29.5%). Total soluble solids, antioxidant activities and total ascorbic acid concentration had an opposite trend. The 50 mesh AirPlus net improved quality aspects of zucchini fruits by increasing total ascorbic acid, total phenols, and antioxidant compounds, with no negative impact on yield.Research investigating hydration strategies specialized for women's soccer players is limited, despite the growth in the sport. The purpose of this study was to determine the effects of fluid balance and electrolyte losses in collegiate women's soccer players. Eighteen NCAA Division I women's soccer players were recruited (age 19.2 ± 1.0 yr; weight 68.5 ± 9.0 kg, and height 168.4 ± 6.7 cm; mean ± SD), including 3 forwards (FW), 7 mid-fielders (MD), 5 defenders (DF), and 3 goalkeepers (GK). Players practiced outdoor during spring off-season training camp for a total 14 practices (WBGT 18.3 ± 3.1 °C). The main outcome measures included body mass change (BMC), sweat rate, urine and sweat electrolyte concentrations, and fluid intake. Results were analyzed for comparison between low (LOW; 16.2 ± 2.6° C, n = 7) and moderate risk environments for hyperthermia (MOD; 20.5 ± 1.5 °C, n = 7) as well as by field position. The majority (54%) of players were in a hypohydrated state prior to practice. Overall, 26.7% of playeendations should be issued relative to soccer position.A new fabrication method for thin (120 µm) thermally curable structural self-adhesive tapes (SATs) was demonstrated by utilizing a series of acrylic syrups (ASs) modified using Bisphenol A-based liquid epoxy resin. The acrylic syrups containing poly(butyl acrylate-co-butyl methacrylate-co-glycidyl methacrylate-co-2-hydroxyetyl acrylate-co-4-acryloyloxy benzophenone) were synthesized via free-radical bulk-photopolymerization (FRBP) process. Influence of different type I radical photoinitiators (PIs), i.e., α-hydroxyalkylphenones (HPs), acylphosphine oxides (APOs) and its mixtures (HPs/APOs and APO/APO) on selected physico-chemical features of obtained ASs was studied. It turned out that APO-type PIs are more effective in the FRBP process (NMR studies). Self-adhesive tests of SATs revealed that the monomers' conversion in ASs have a significant influence on adhesion and tack. Moreover, the polymer structures formed at the UV cross-linking stage of SATs significantly affect the cross-linking degree of SATs during thermal curing (differential scanning calorimetry method). The highest values of overlap shear strength were achieved by SATs based on ASs with monomers' conversion on the level 50-60%.Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize-from a personal perspective-prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy.