https://www.selleckchem.com/products/endoxifen-hcl.html Compressive tests were carried out to estimate the elastic modulus of the produced structures and finite element analyses were performed, for comparison purposes. Linear correlations were found for the dimensions, porosity, and elastic modulus when comparing the CAD design with the SLM structures. The produced NiTi structures exhibit elastic moduli that match that of bone tissue, which is a good indication of the potential of these structures in orthopaedic implants.Magnetic resonance imaging (MRI) under mechanical loading, commonly referred to as stress MRI, allows the evaluation of functional properties of intra- and periarticular tissues non-invasively beyond static assessment. Quantitative MRI can identify physiological and pathological responses to loading as indication of, potentially treatable, early degeneration and load transmission failure. Therefore, we have developed and validated an MRI-compatible pressure-controlled axial loading device to compress human knee specimens under variable loading intensity and axis deviation. Ten structurally intact human knee specimens (mean age 83.2 years) were studied on a 3.0T scanner (Achieva, Philips). Proton density-weighted fat-saturated turbo spin-echo and high-resolution 3D water selective 3D gradient-echo MRI scans were acquired sequentially at 10° joint flexion in seven configurations unloaded and then at approximately half and full body weight loading in neutral, 10° varus and 10° valgus alignment, respectively. Following manual segmentation in both femorotibial compartments, cartilage thickness (ThC) was determined as well as meniscus extrusion (ExM). These measures were compared to computed tomography scans, histological grading (Mankin and Pauli scores), and biomechanical properties (Instantaneous Young's Modulus). Compartmental, regional and subregional changes in ThC and ExM were reflective of loading intensity and joint alignment, with the greatest c