https://www.selleckchem.com/products/brivudine.html To evaluate the clinical utility of intravenous gadolinium-enhanced heavily T2-weighted 3D fluid-attenuated inversion recovery (HT2-FLAIR) imaging for identifying spinal cerebrospinal fluid (CSF) leaks in patients with spontaneous intracranial hypotension (SIH). Patients with SIH underwent MR myelography and post-contrast HT2-FLAIR imaging after an intravenous gadolinium injection. Two types of CSF leaks (epidural fluid collection and CSF leaks around the nerve root sleeve) at each vertebral level were compared between the 2 sequences. The total numbers of CSF leaks and vertebral levels involved were recorded for the whole spine. The sequence that was superior for the overall visualization of epidural and paraspinal fluid collection was then selected. Nine patients with SIH were included in the present study. HT2-FLAIR imaging was equivalent or superior to MR myelography at each level for detecting the 2 types of CSF leaks. In the 2 types of CSF leaks, the total numbers of CSF leaks and levels involved were higher on HT2-FLAIR images than on MR myelography, while no significant difference was observed for CSF leaks around the nerve root sleeve. In all 9 patients, HT2-FLAIR imaging was superior to MR myelography for the overall visualization of epidural and paraspinal fluid collection. Intravenous gadolinium-enhanced HT2-FLAIR imaging was superior to MR myelography for the visualization of CSF leaks in patients with SIH. This method can be useful for identifying spinal CSF leaks. Intravenous gadolinium-enhanced HT2-FLAIR imaging was superior to MR myelography for the visualization of CSF leaks in patients with SIH. This method can be useful for identifying spinal CSF leaks.The COVID-19 pandemic is having a major impact on how current clinical trials are being conducted in the U.S. Researchers have experienced the effects of COVID-19 through the halting and delaying of clinical trials, the lack of personal protection